HEWLETT-PACKARD

JJOURINAL e

(SoﬂBench Tool Help

DM Ready Xenon

BUILD Ready xenon

DEBUG Ready xenon

MONITOR Ready xenon | Context: xenon:/users/ve/bd

STATIC Ready Host: SRR
B Execution X enot

! Start DEBUG
DM
luew Context EDIT

P

[File Edit Buffer Procedure Block Token Help
File: xenon: /users/ve/bd/ .defaults (, T&X‘

SunDefaults_Version 2
fMail/Set/editmessagewindow "Yes"
{Mailj/Set/askcc "Yes"
{Mail/Set/autoprint "Yes"

Logging Enabled ;56 . .vion N EDIT STAT|
Quit 356—xenon N EDIT STAI
»oItedit. I4 4z—vy650-xenon N EDIT WINLC

Softedit.14 70-9656—xenon N EDIT STAR
Softedit.14 71-9656—xenon N EDIT STA1 ¥

o R N CAYROISS : »1

/A Fackarc

HEWLETT-PACKARD

JOURINAL e

» Making Computer Behavior Consistent: The HP OSF/Motif Graphical User Interface
by Axel O. Deininger and Charles V. Fernandez

8 OSF/Motif

The HP OSF/Motif Window Manager, by Brock C. Krizan and Keith M. Taylor

23 Interclient Communication Conventions

Programming with HP OSF/Motif Widgets, by Donald L. McMinds and Benjamin J.
Ellsworth

27 The Evolution of Widgets

The HP SoftBench Environment: An Architecture for a New Generation of Software
Tools, by Martin R. Cagan

37 Architectural Support for Automated Testing

39 Broadcast Message Server Message Structure

40 Distributed Execution, Data, and Display

41 Schemes: Interface Consistency

42 Pervasive Editing in the HP SoftBench Environment

43 Native Language Support

45 Mechanisms for Efficient Delivery

46 Application of a Reliability Model to the HP SoftBench Environment

) A New Generation of Software Development Tools, by Colin Gerety

49 Development Manager
51 Program Editor

52 Program Builder

54 Static Analyzer

55 Program Debugger

57 Integrated Help

Editor, Richard P. Dolan @ Associate Editor, Charles L. Leath ® Assistant Editor, Gene M. Sadoff @ Art Director, Photographer, Arvid A. Danielson
Support Supervisor, Susan E. Wright ® Administrative Services, Diane W. Woodworth ® Typography, Anne S. LoPresti ® European Production Supervisor, Sonja Wirth

2 HEWLETT-PACKARD JOURNAL JUNE 1990 © Hewlett-Packard Company 1990 Printed in U.S.A

L R T O O O R I R R ——————————————

HP Encapsulator: Bridging the Generation Gap, by Brian D. Fromme

65 HP Encapsulator CASE Case Study

Introduction to Particle Beam LC/MS. by James A. Apffel, Jr. and Robert G. Nordman

Advances in IC Testing: The Membrane Probe Card, by Farid Matta

4 In this Issue
4 5 Cover
5 What’s Ahead
86 Authors

The Hewlett-Packard Journal is published bimonthly by the Hewlett-Packard Company to recognize technical contributions made by Hewlett-Packard (HP) personnel. While
the information found in this publication is believed to be accurate, the Hewlett-Packard Company makes no warranties, express or implied, as to the accuracy or reliability of
such information. The Hewlett-Packard Company disclaims all warranties of merchantability and fitness for a particular purpose and all obligations and liabilities for damages,
including but not limited to indirect, special, or consequential damages, attorney’s and expert's fees, and court costs, arising out of or in connection with this publication.

Subscripti The Hewlett-Packard Journal is distributed free of charge to HP research, design, and manufacturing engineering personnel, as well as to qualified non-HP
individuals, libraries, and educational institutions. Please address subscription or change of address requests on printed letterhead (or include a business card) to the HP address
on the back cover that is closest to you. When submitting a change of address, please include your zip or postal code and a copy of your old label.

Submissions: Although articles in the Hewlett-Packard Journal are primarily authored by HP employees, articles from non-HP authors dealing with HP-related research or
solutions to technical problems made possible by using HP equipment are also considered for publication. Please contact the Editor before submitting such articles. Also, the
Hewlett-Packard Journal encourages technical discussions of the topics presented in recent articles and may publish letters expected to be of interest to readers. Letters should
be brief, and are subject to editing by HP.

Copyright © 1990 Hewlett-Packard Company. All rights reserved. Permission to copy without fee all or part of this publication is hereby granted provided that 1) the copies
are not made, used, displayed, or distributed for commercial advantage; 2) the Hewlett-Packard Company copyright notice and the title of the publication and date appear on
the copies; and 3) a notice stating that the copying is by permission of the Hewlett-Packard Company appears on the copies. Otherwise, no portion of this publication may be
3 produced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage retrieval system without written

permission of the Hewlett-Packard Company.
Please address inquiries, submissions, and requests to: Editor, Hewlett-Packard Journal, 3200 Hillview Avenue, Palo Alto, CA 94304, U.S.A.

JUNE 1990 HEWLETT-PACKARD JOURNAL 3

B

In this Issue
“ ' We didn’t plan it that way, but two groups of articles in this issue deal with

the design of software to make user interaction with computers simpler, more S
| consistent, more intuitive, more standard, more foolproof. One group of
articles describes a standard graphical user interface and the other describes
an environment that provides a consistent user interface for software develop-
. ment tools. Since we didn’'t do anything special to get these two packages
into the same issue, their simultaneous appearance—close on the heels of
. the HP NewWave Office—is simply further evidence of the attention that
user friendliness is receiving in the R&D community.

The graphical user interface is called OSF/Motif. It's the first product of the Open Software
Foundation, an international organization created by leading computer companies to promote
open software standards—standards that make it easier for users to mix and match applications
and computers from different suppliers. Based on technology from Hewlett-Packard and Digital
Equipment Corporation, OSF/Motif provides consistent behavior between personal computers
and engineering workstations and an enhanced 3D appearance that makes buttons look as if
they’ve been pressed when the user selects them. HP’s implementation of the OSF/Motif graphical
user interface is described in the three articles on pages 6 to 35. The first article discusses HP
OSF/Motif concepts and external behavior. The other two articles discuss the two main HP
OSF/Motif components: the HP OSF/Motif window manager and the HP OSF/Motif widgets. The
widget library is a programmer’s toolkit that makes it easy to develop applications that have the
OSF/Motif graphical user interface.

The software development environment is called the HP SoftBench environment. It provides
software developers with a unified, consistent interface to the computer-aided software engineering
(CASE) tools they most often need. Tools included in the HP SoftBench product are a program
editor, a static analyzer, a program debugger, a program builder, and electronic mail. Using an ¢
HP SoftBench component called the HP Encapsulator, other tools can be added to the environment
and HP SoftBench tools can be replaced with other tools. Provided that they meet certain minimum
requirements, encapsulated tools don’t have to be modified at all. The HP SoftBench environment
is designed to support development teams in distributed computing environments. It can be
customized to conform to local organizational, team, and personal processes, and any tool can
execute on any computer in the user’'s network. The HP SoftBench user interface follows the
OSF/Motif appearance and behavior. (Because of the small size of the screen images shown in
the articles, the 3D appearance isn’t apparent there, but you can see it on the cover.) The HP
SoftBench tool integration architecture is described in the article on page 36. The HP SoftBench
CASE tools are explained in the article on page 48, and the HP Encapsulator is the subject of
the article on page 59.

4 HEWLETT-PACKARD JOURNAL JUNE 1990

e et

“Hyphenated techniques” is a name chemists use to refer to certain combinations of analytical
techniques. One of these is liquid chromatography/mass spectrometry, or LC/MS. The constituents
of an unknown sample mixture are separated by aliquid chromatograph, and a mass spectrometer
is used to identify and measure the concentration of each constituent. It's not entirely straightfor-
ward. An interface is needed between the two instruments to control the flow rate and remove
the solvent that carries the unknown through the chromatograph. While several interface tech-
niques have been tried, none has been completely satisfactory. However, the relatively new
particle beam interface looks good. It is applicable to a wide range of compounds and produces
spectra that have high information content. The article on page 69 introduces us to particle beam
LC/MS, describes the design of HP’s particle beam interface, and presents performance data for
the HP system.

Equipment for testing integrated circuits at the wafer stage—before the individual chips are
separated—typically consists of an automatic test system, a prober, and a probe card. For testing
high-pin-count or high-speed devices, conventional probe card designs just don’t work reliably in
factory conditions. The paper on page 77 presents the results of research aimed at developing
an alternative. HP’s proprietary membrane probe technology replaces the conventional probe
card and its needle probes with a thin, flexible dielectric film supporting a set of microstrip
transmission lines that have microcontacts at their ends. Complex, high-density contact patterns
are easily formed photolithographically. Contact resistance was found to remain low and stable
for up to a million touchdowns with only a simple cleaning every 20,000 cycles. The paper presents
performance results from alpha-site tests.

R.P. Dolan
Editor

Cover
An HP SoftBench window environment, showing the OSF/Motif 3D appearance.

What’s Ahead

The August issue will contain about one third hardware design and two thirds software design.
The hardware consists of the HP 8130A 300-MHz, variable-transition-time pulse generator and
the HP 8131A 500-MHz pulse generator. The software is HP's implementation of the Manufacturing
Automation Protocol, MAP 3.0.

JUNE 1990 HEWLETT-PACKARD JOURNAL 5

Making Computer Behavior
Consistent: The OSF/Motif Graphical

User Interface

Window-oriented user interfaces provide knowledge
workers with powerful tools to control their computer
environments and increase productivity. The OSF/Motif
gmph@auwerm&HMCepﬂwkmssMndadsandkmwto
ensure consistency in the appearance and behavior of

applications running in the X Window System.

by Axel O. Deininger and Charles V. Fernandez

MAGINE THE PROBLEMS IT WOULD CAUSE the driv-

ing public if there were no standards for the location of

the brake and gas pedals on an automobile. Fortunately,
the auto industry has standards for the location of certain
items that are critical for the operation of an automobile.
In the computer industry, standardization and consistent
behavior of the user interface for computer applications is
not yet a reality. User interfaces defining how people and
computer programs communicate with each other still dif-
fer from one application to another.

Inconsistent user interfaces make it much more difficult
for users to learn and operate different applications. This
problem is accentuated in multitasking operating systems
such as HP-UX, whose appeal includes the ability to run
several programs at once. The cost of such inconsistency
is more than just a little frustration for computer users.
Inconsistency causes users to be hesitant or to avoid using
or purchasing new computer applications, thereby causing
lost revenues to application vendors, and possibly lost pro-
ductivity because the new applications might enable tasks
to be done more quickly and efficiently.

Hewlett-Packard’s efforts in developing and promoting
a cooperative computing environment are based on an in-
terest in industry standards that support a consistent user
interface. HP’s adoption of the UNIX* operating system as
the basis for the HP-UX operating system and early support
for industry standards such as the X Consortium and the
Open Software Foundation (OSF), are examples of HP’s

k T 7l
X

| Resizing =

Moving

k &

6 HEWLETT-PACKARD JOURNAL JUNE 1990

interest in this area. The X Window System™ from the
Massachusetts Institute of Technology has been available
on HP-UX systems since 1988, and the OSF/Motif graphical
user interface, completed for OSF in 1989, is now available
on HP-UX 7.0. The OSF/Motif user environment is based
on HP’s graphical user interface CXI (common X interface).
See the box on page 8 for more about OSF.

This article describes some of the concepts and external
features provided by the OSF/Motif graphical user inter-
face. The articles on pages 12 and 26 describe the two main
components of the OSF/Motif user interface: the OSF/Motif
widgets and the OSF/Motif window manager.

Concepts for Consistent Behavior
The following concepts are essential for designing a con-
sistent user interface:
An object-action design model that is universally applied
and simple to understand
Direct manipulation of objects with immediate and con-
sistent visual cues for feedback
Tools that are consistent enough to ease the learning
burden of novice users, yet flexible enough to allow ex-
perienced users to take shortcuts.
The object-action selection model means that the user
first selects an object and then selects an action to perform
on that object. Standard controls such as menus and push-

The X Window System is a trademark of the Massachusetts Institute of Technology
UNIX is a registered trademark of AT&T in the U.S.A. and in other countries

Pointing

X

Horking
Fig. 1. Different pointer shapes
E that provide visual cues to the type

of activity.

buttons represent the selections. The objects typically rep-
resent a real-life metaphor that the user is familiar with.
For instance, in the HP NewWave Office," the objects in-
clude file cabinets, folders, and documents. Consistent be-
havior implies that the set of controls and objects will
always operate in the same way.
Direct manipulation with visual feedback means that the
. user is provided with a response that somehow represents
the action taken, and it is done in real time. For example,
when a button on the display is selected, the visual feed-
back might be that the button appears to be pressed in.
Real-time feedback implies that the manipulation of objects
on the display is synchronized with the motions of the
device (mouse and buttons) being used to perform the man-
ipulation. For example, the events on the display should
not lag behind the motion of the mouse.

Consistent behavior does not eliminate individuality, nor
does it imply rigid conformity. Much flexibility exists
within consistent behavior for application developers to
present their applications in the best possible light. Novice
users typically make a menu selection by displaying the
menu, reading the selections, and then clicking the mouse
over the item they want. Experienced users make selections
using a quicker method, such as entering a one-letter
mnemonic or bypassing some menu levels. The specific
controls such as pushbuttons and scroll bars do not repre-
sent a finite set, but rather a basic, core set that is expected

pointing
device than a free-roaming mouse,

’ <s3>A WINDOW ON THE WORLD

Windows are the means by which people view the
ide their

computers, Each window displays a separate vi
multitasking environment, a person can have ma
operating at the same time, With networked ¥

, each of
those windows can show activity on a different
even on
a computer thousands of miles away, Figure 2 contral select
s a

cursor
default choice (selection}
desktop

dialog box
dimmed selection

Efpical environment.,

<figure screen PCL entity=rootpix>
A Typical Windowed Environment.,
<\figurer

Like most work areas, a window envirorment iz v
from
disarray,
h’s
workplace can e
bedraom,

Inde

ar, the pri
inFarmation you se)
complete my repol

++0rganizing Th
like pieces of
Paper on 3 desk

= d
hics/obscured?,pcl ">

lrote /net/scribesus

to evolve as technology changes and users gain more experi-
ence.

Tools for Knowledge Workers

To be productive using a computer, knowledge workers
must have tools that enable them to communicate with and
economize control over the programs running on the com-
puter. The two most common tools for this purpose are the
traditional typewriter-style keyboard and a pointing de-
vice—usually a mouse.
Standard Mouse Techniques. Traditionally, control over
the computer has relied on the user’s ability to type. This
is being rapidly replaced by the use of pointing devices
such as the mouse. A mouse enables the user to control
most operations using three actions:

Pointing. Positioning the mouse pointer over an object.

This signals a possible interest in that object.

Clicking. Pressing and releasing a mouse button selects

the object. Double-clicking, or clicking a mouse button

twice in rapid succession, selects an object and then

performs the designated default action on the object.

Dragging. Pressing the mouse button and moving the

pointer enables a user to move objects, select a range of

objects, or browse a menu (depending on the context of

the situation).

The shape of the mouse pointer indicates the current
operations taking place in the user interface environment.

ured?2 FILE “/doc/Merge/beginnes
2.p61"3
F}LE "/doc/Merge/beginners/arat,

rs FILE "/users/charlie/graphi®
">

Fig. 2. A typical window environ-
ment.

JUNE 1990 HEWLETT-PACKARD JOURNAL 7

Many pointer shapes are possible. Each shape is visually
descriptive and provides an important visual cue about the
operational state of the interface. Fig. 1 illustrates some
common pointer shapes.

By using the modifier keys Shift and CTRL in combination
with the mouse, the user can select a single choice, several
choices, a contiguous range of choices, or a noncontiguous
range of choices.

Keyboards. A typewriter-style keyboard may be the tradi-
tional tool for computer users, but graphical user interface
environments like OSF/Motif do not require users to be

The Open Software Foundation (OSF) is a group of the leading
companies in the computer industry organized to promote open
software standards. The foundation is incorporated as a non-

; profit, industry-supported research and development organiza-
tion that has the responsibility to provide software that makes it
| easier for users to mix and match computers and applications
| from different suppliers by addressing the following needs:
| = Portability. The ability to use application software on computers
from multiple vendors.
= Interoperability. The ability to have computers from different
| vendors work together.
= Scalability. The ability to use the same software environment
on many classes of computers, from personal computers to
supercomputers.

In response to OSF’s request for user interface technology, 39
| companies including HP presented their visions of the future of
| computing. HP's vision of a common X interface (CXI) that united

the behavior of Presentation Manager* in the personal computer
world with the power of workstations in the UNIX-system world
was chosen as the basis upon which to build an OSF user inter-
face standard.

OSF awarded HP a contract to develop and document a CXI-
based user interface. This became the OSF's first product, the
OSF/Motif user interface. Like CXI, the OSF/Motif user interface
is based on a three-dimensional appearance and the behavior
of Presentation Manager, which is a standard graphical user

*Presentation Manager is a product of Microsoft Corporation.

& :
Initiates Keyboard

and Mouse Events Window &
Manager

[Interprets Events by:

= Acting on Management Events

[m Passing Application Events to
Applications

m Returning Application Responses
to the User

8 HEWLETT-PACKARD JOURNAL JUNE 1990

OSF/Motif

keyboard experts or to learn the arcane syntax of traditional
command-line interfaces.

Although the tools of a graphical user interface such as
the mouse are easier to use, keyboards remain the most
efficient tool in some cases, particularly for text entry. Also,
a number of keyboard alternatives exist. Arrow keys can
emulate mouse movement and can be just as fast as a mouse
when only a few objects are on the screen, or when the
user’s hands are already on the keyboard. Single-letter
mnemonics and keyboard accelerators for commonly used
commands also show that the keyboard is still a useful

interface of the personal computer world. The OSF/Motif product
includes a style guide that defines a common user interface
behavior consistent with Presentation Manager, a window man-
ager to control graphical objects on the display screen, a software
toolkit of widgets and intrinsics with which to build applications,
and a user interface language to speed application prototyping.
The article on page 12 describes the OSF/Motif window manager,
and the article on page 26 describes the OSF/Motif widgets.

The OSF/Motif user interface is the most visible piece of what |
will become a complete OSF/Motif user environment. It thus plays ‘
a major role in making the applications that run on UNIX-system-
based systems more user friendly. The OSF/Motif environment
enables users to operate their computers with graphical controls
like pushbuttons, windows, and menus. Where once users had
to memorize dozens of obscure commands and type flawlessly,
now they need only point with a mouse and click a button.

Fig. 1 shows the interactions between the window manager
and a client application. The X Window System is an accepted
standard in the UNIX-system world and is the platform for the
OSF/Motif widgets and intrinsics. The OSF/Motif window manager
provides the Presentation Manager appearance and behavior |
characteristics for applications. Because OSF/Motif follows a
technology standard, users need no longer ponder issues of
hardware and software compatibility. Because OSF/Motif follows
a behavior standard, users need not learn multiple command
sets to control applications. Once they understand direct manipu-
lation, they can control any program.

Client
Application

icati . .
éi;tosnaﬁzp;'::s:’; Fig. 1. Interactions between some

Responses to the Window P38 of the components in the OSF/ |
Manager Motif hierarchy.

Window Menu

Resize Title Bar

Border

\

< Resize
: Border

T

~——— Client Area —n0

Maximize

Minimize

Resize
Border

3
=
g
‘ﬂ‘

Fig. 3. The frame of a window in
- the OSF/Motif environment.

interface tool.

Special Tools. The keyboard and mouse are by no means
the only tools available. Consistent behavior supports the
use of many tools for just about all occasions. Hewlett-Pack-
ard’s Human Interface Link (HP-HIL) provides many inter-
face tools for computer users. Which tool is used depends
on the application and the user. For example, a mouse
might not be appropriate as a pointing device in all cases.
If the application is a computer-aided design (CAD) appli-
cation, perhaps a graphics tablet or light pen might be a
better choice. If the situation is such that a minimum of
desk space exists, perhaps a track ball would be a better
choice as a pointing device than a free-roaming mouse.

Windows

Windows are the means by which users view the world
inside their computers. Each window displays a separate
view. In a multitasking environment, a user can have many
windows operating at the same time. With networked X
Window System technology, each window can show activ-
ity on a different computer, even a computer thousands of
miles away. Fig. 2 illustrates a typical window environ-
ment.

Like most work areas, a window environment is not im-
mune to disarray. Indeed, with remarkably little effort, the
workplace (display) can easily become cluttered to the
point of distraction. Windows typically averlap like pieces
of paper on a desktop. New windows open on top of the
stack, partially obscuring older windows lower in the stack.

There are a number of ways to organize the work area.
Controls are present on the window frames for the conve-
nience of mouse users. Fig. 3 shows the layout of a typical
window in the OSF/Motif window manager environment.
Windows can be moved out of the way by dragging the
title bar. The window frame itself is not just a border; when

grabbed by the mouse, the border stretches or shrinks to
resize the window.

When moving or shrinking a window is not enough to
get it out of the way, the window can be turned into a
graphical icon by clicking on the minimize button in the
window frame. The icon saves space on the screen without
halting the application running in the window. This is
analogous to a person putting a clock in a desk drawer—the
clock still works, it’s just out of the way.

To give a window undivided attention, the user can click
on the maximize button in the window frame. This will
enlarge a window to its maximum size and will often cause
it to cover the entire screen. This is a useful feature for
complex CAD design.

Menus

Consistent behavior provides a number of ways for users
to control the windows in their work areas. The idea is
that no one way will be correct for everyone, so by building
flexibility into the environment, users can pick a way to
manage windows that best fits the situation. To help pro-
vide this flexibility, every window has a window menu.
Users can display a window menu either by clicking the
left mouse button with the pointer positioned over the
window menu icon for that window, or by pressing Shift
and ESC simultaneously. If the window menu is hidden,
it can be revealed with the click of a mouse button.

The window menu shows all of the window management
commands available for a window. Fig. 4 shows the con-
tents of the default menu for the OSF/Motif window man-
ager. This menu duplicates the commands embedded in
the window frame and may provide different commands
as well. To initiate an action from the menu, the user po-
sitions the mouse pointer over the desired selection and
clicks the left mouse button. For keyboard-oriented selec-

JUNE 1990 HEWLETT-PACKARD JOURNAL 9

b frames for the convenience %
t of a typical window, Peoph
g the title bar, The window *

w-ed by the mouse, the border s
12 e e window,

<figure nonumber PCL entity=sysmenu:
la Window Frame With Standard System Menu,
<N\figurer

{Text Fill)--—-56¢-————--——

View

10 HEWLETT-PACKARD JOURNAL JUNE 1990

Fig. 4. A window showing a win-
dow menu.

Fig. 5. A typical application main
window.

Text Entry Box

Radio Buttons

Check Buttons

| lesheet to use:
T W Bold
memo e e
; JdUnderline
Margins Measurements
Left: il
Right: ' mig| * é”Ch
entimeter
Top: = & Fica
Bottom: LS >
\ Points
0K I Resetl Cancel Help I

Option Menus

tion, the user can type a one-character mnemonic.
Mnemonics are the underlined characters in a menu entry
(see Fig. 4). Typing the keyboard accelerator (shown after
the menu entry) will perform the command without dis-
playing the menu first. Keyboard accelerators are the fastest
way to invoke frequently used commands. For example,
pressing the keys Alt and f9 simultaneously will minimize
a window. Users can customize keyboard accelerators to
suit their personal needs.

Controlling Applications in the Window

Of greatest interest to users is not the window, but the
application running in the window. Fig. 5 shows a typical
application’s main window. The bulk of the space in the
window (known as the client area) is reserved for display-
ing the application. This can be text for a word processor
or a schematic for a CAD package.

Commands used to control the application are tucked
away in the menu bar at the top of the window. The menu
bar lists the titles of available menus. To display a menu,
the user positions the pointer over the menu title and clicks
the mouse button, or uses one of the keyboard techniques.
Selecting a command from a menu bar menu is the same
process as selecting a menu item from the window menu
described earlier. The menu bar menus can contain both
commands, which are actions that occur immediately, and
settings, which are states of being (such as double-spaced
text) that are not actions themselves but that affect sub-
sequent actions such as printing.

Standard Menus for Standard Actions. Standard menus
are recommended for standard actions to ensure consistent
behavior among applications. The titles of the standard

Pushbuttons

Fig. 6. A sample dialog box.

menus for an application are listed in the menu bar. Three
of the standard menus include:

File. Contains file actions like opening, creating, saving,

and printing a file.

Edit. Contains edit actions like undoing, cutting, copy-

ing, pasting, and clearing sections of a file.

Help. Contains helpful information like context sensitive

instructions, information on the use of keys, index list-

ings of help topics, and information on how to use the
help function.
Pop-up Menus, Check Boxes, and Pushbuttons. The menu
bar presents an effective compromise between providing
an efficient storehouse for a large number of actions and
presenting visual cues so users can readily see what choices
are available.

Pop-up menus are a good choice for applications that
want to place the most commonly used actions under the
fingertips of mouse users. They are particularly effective
in text and graphics editors. Users can select a range of
text and press the second mouse button to pop up the
menu. There is no need to travel with the mouse pointer
to the menu bar. Pop-up menus are very fast when used
with the mouse drag technique.

Applications that want to make certain action choices
visible all the time can use pushbuttons to place them in
control panels. Radio buttons and check boxes are used in
the same way for settings. All of these controls are modeled
after real-life objects. Pushbuttons are found on many elec-
trical appliances. The radio buttons stem from a car stereo,
hence their use for mutually exclusive settings (aradio can
be tuned to only one station at a time). Check boxes appear
on many paper forms such as job applications.

JUNE 1990 HEWLETT-PACKARD JOURNAL 11

Dialog Boxes. Dialog boxes are so named because they en-
able users to carry on a dialog with an application. Fig. 6
shows an example of a dialog box associated with a
hypothetical copy command. The sample dialog box con-
tains a text entry box for entering the name of a style sheet,
a set of radio buttons for indicating mutually exclusive
units of measure, check buttons indicating settings for type
style, option menus provding a limited choice of margin
sizes, and a row of pushbuttons indicating what action
should be taken.

Conclusion
Window-oriented graphical user interfaces offer an op-
portunity to make the computer as pervasive an appliance

as the automobile. But, if they are truly going to do so there
must be standards for consistent behavior. A behavior stan-
dard has advantages for both computer users and computer
vendors. Users are finding programs easier to learn and
use. The market for standards-conformant applications is
growing. Vendors are finding they can produce more appli-
cations while concentrating their product efforts on de-
veloping performance and features rather then developing
user interfaces.

References
1. B.Lam, et al, “The NewWave Office,” Hewlett-Packard Journal,
Vol. 40, no. 4, August 1989, pp. 23-31.

The HP OSF/Motif Window Manager

The HP OSF/Motif window manager, which is built on top
of the X Window System, is a window management interface
that provides a 3D enhanced Presentation Manager
appearance and behavior using HP OSF/Motif widgets.

by Brock C. Krizan and Keith M. Taylor

HE X WINDOW SYSTEM, Version 11 (also known

as X or X11)? was developed as a platform on which

a variety of user interfaces can be implemented. The
particulars of a user interface are determined by the X
clients that run on the system. X clients are programs that
use X to display information and receive input. The HP
OSF/Motif Window Manager (mwm) is one such client.

Fig. 1 shows the relationship between the X Window
System and clients. The OSF/Motif window manager mwm
implements an interface that allows user and client ma-
nipulation of windows. Mwm dictates through its window
management interface a particular user interface behavior.
The principal objects that are manipulated using the win-
dow manager are the client windows placed directly on
the background, or root, window of the screen. Windows
within these top-level client windows are managed by
clients and are not directly manipulated by the window
manager. Users are provided with ways to move and resize
windows, to direct all keyboard input to a particular win-
dow, and to install color maps® for a window.

X, as it comes from the Massachusetts Institute of Tech-
nology (MIT), provides mechanisms for supporting clients
that implement a variety of window management user in-
terfaces. A sample window manager, uwm, is distributed
by MIT. Several window managers have been implemented
at companies and universities to meet the needs of a par-
ticular application environment, to emulate some non-X
Window System user interface, to provide the latest new
and improved window management interface, or to provide

12 HEWLETT-PACKARD JOURNAL JUNE 1990

personal customizations of uwm. Window managers are one
of the most common types of X clients.

With so many window managers available, implement-
ing another window manager would seem to be a waste of
time. However, the window manager is an essential and
highly visible part of any window system user interface,
and the usability of a system can be significantly affected
by the window manager. Prior to the availability of mwm’s
predecessor, the HP window manager, or howm, HP custom-
ers who had access to X used the sample window manager
uwm or, less frequently, window managers available in the
public domain. HP wanted to give users an interface that
was visually refined, consistent, easy to learn, and based
on industry standards.

Hpwm supports industry standards in appearance and be-
havior as well as X standards for client interoperability.
The appearance and behavior of hpwm is based on Presen-
tation Manager, which also defines the window manage-
ment appearance and behavior for HP’s NewWave Office.
Users already familiar with the Presentation Manager stan-
derd from the personal computer environment now find
their skills useful on an HP-UX workstation. The three-di-
mensional visuals of hpwm represent a refinement, not a
change, from Presentation Manager standard appearance.

In 1988, the Open Software Foundation (OSF) accepted
HP’s proposal that hpwm be adopted as the basis for the
OSF/Motif window manager. The commitment to Presenta-
tion Manager as an industry-standard user interface was
key in OSF’s decision. OSF/Motif encompasses several

Other Workstations
or
Host Computers

Workstation

Fig. 1. The X client-server model. In this model the X server
is near the user and controls the display and manages the
input devices. The clients in this model are the applications
that talk to the server using the X protocol, such as mwm,
XLOAD, and XCLOCK. The X protocol allows the clients and
server to run either on the same machine or on different
machines connected by a network. (a) X client-server ar-
chitecture on stand-alone workstation. (b) X client-server re-
lationships in a distributed environment.

*Minimize
Button

*Window Menu

¢ Button *Title Area

technologies built on top of the X Window System, and
the new OSF/Motif window manager is only one piece of
the OSF/Motif environment.

Window Manager Characteristics

The basic set of functions that a window manager pro-
vides is relatively constant in any window system. On the
other hand, the appearance and behavior vary greatly from
one window manager to another. Many of the characteris-
tics of mwm were leveraged from hpwm. This allowed us to
meet an aggressive schedule and still satisfy the function-
ality and quality goals for mwm.

Common Appearance and Behavior

Like hpwm, the appearance and behavior of mwm are heav-
ily influenced by Presentation Manager. Indeed, the default
behavior of mwm, as well as that of the OSF/Motif widgets,
is as close to Presentation Manager as is practical. A key
benefit of this is that users can easily move between systems
running MS/DOS® or OS/2 and systems running the HP-UX
operating system and X Windows. Nevertheless, some dif-
ferences were admitted into the design of mwm to satisfy
the variety of HP-UX users and to use the power of engineer-
ing workstations. This has led to a window manager with
a high degree of configurability and an enhanced appear-
ance over Presentation Manager.

Key behavioral aspects of Presentation Manager and the
OSF/Motif environment include the direct manipulation
of objects and an object-action paradigm for user interac-
tion. Direct manipulation involves using the keyboard and/
MS-DOS is a U.S. registered trademark of Microsoft Corporation.

*Maximize
Button

Optional
Matte
Client
Area
Window 5
Frame
* Resize Fig. 2. A client window and the

*Direct Manipulation Components

Handles
(8 Total)

various window manager compo-
nents.

JUNE 1990 HEWLETT-PACKARD JOURNAL 13

or mouse to do window management functions directly,
such as moving and resizing a window. A user does not
enter a command such as move -w mywindow x=10 y=100, but
rather drags the window using the mouse to the new posi-
tion. With the object-action paradigm, the user selects an
object and then performs some action on the object.

3D Appearance

One deviation from strict adherence to the Presentation
Manager standard is in the appearance of the user interface
components. The three-dimensional visual style developed
for earlier HP products was accepted by OSF as part of the
OSF/Motif standard. 3D components appear in both the
window manager and the OSF/Motif widgets. Use of 3D
components strengthens the direct manipulation paradigm
by providing visual objects that react naturally to user ac-
tions (e.g., buttons appear to go in when pressed).

Mwm uses the OSF/Motif widgets to provide visual and
operational compatibility with other clients that use the
OSF/Motif widgets. All parts of mwm are displayed with
the 3D visual style. This includes the window manager
frame, icons, and menus. A key factor that influenced mwm’s
use of the 3D visual style was the prevalence of window
manager components on the screen. The challenge was to
provide a 3D appearance but not to distract from or limit
the client user interface. Mwm is designed to be frugal with
its use of screen space, subtle in its use of 3D indications,
and restrained in its use of color. Fig. 2 shows a client
window and the various window manager components.

Configurable Appearance and Behavior

Although mwm implements the Presentation Manager be-
havior with a 3D visual style, configurability was consid-
ered a desirable departure from a strict Presentation Man-
ager model. In some cases configurability applies to aspects
of the user interface that are not constrained by the standard
appearance and behavior. The colors of components and
the fonts that are used fall into this area. Configurability
can also alter the standard appearance and behavior in
fundamental ways. Since it is almost impossible to provide
a single, fixed user interface acceptable for all users, con-
figurability is highly desirable.

Configurability of mwm is provided in a way that does
not burden users who are satisfied with the window man-
ager’s standard appearance and behavior. Mwm provides
the standard appearance and behavior as a default and
allows for user customization. Configuration is only neces-
sary if there are specialized requirements. In addition, mwm
provides a function that resets all customized mwm settings
to default values to give the user a known starting place
from which to work.

It is anticipated that only a small group of system ad-
ministrators will want to customize mwm. To make their
job easier, mwm uses the same resource names for specifying
configuration values for colors and fonts as are used for
OSF/Motif widgets. The result is that configuring mwm is
similar to configuring any client built using OSF/Motif
widgets.

ICCC Compliance
Compliance with the standard Inter-Client Communica-

14 HEWLETT-PACKARD JOURNAL JUNE 1990

tion Conventions (ICCC) developed by the X Consortium
is a requirement for any X client. These conventions are
intended to facilitate interoperability of X clients. Clients
that follow the conventions can coexist on the same screen
and not interfere with each other’s behavior. This applies
particularly to the communication between clients and
window managers. The ICCC is the basis for the program-
matic interface to X window managers (see the box on page
23).

Mwm implements the ICCC standard in a way that is com-
patible with the standard OSF/Motif behavior. This allows
a user to run a client even though it was developed without
specific knowledge of mwm.

Mouse and Keyboard Interfaces

Window managers are often implemented with a reliance
on the mouse for user interaction and the keyboard is ig-
nored. The OSF/Motif behavior specifies a functional
equivalence between mouse and keyboard interaction.

Mwm is fully functional when it is run on systems that
do not have a mouse input device. Not only does the stan-
dard OSF/Motif behavior have keyboard support, but mwm
supports features beyond the OSF/Motif standard. For
example, keyboard and mouse interaction can be mixed
together, even while doing a particular action such as mov-
ing a window.

Mwm has two basic phases of operation: start-up and event
processing. At start-up, mwm asserts itself as the window
manager for a particular screen, processes configuration
information, and takes care of currently displayed client
windows (see Fig. 3). Event processing is the steady-state
phase of operation. Like most X clients, mwm is event driv-
en—that is, it waits for some type of X event, processes
the event, and then waits again. In the event-processing
phase, all mwm actions are the direct result of some event.

Start-up

When mwm first starts up it must indicate to the X server
that it wants to be the window manager. The X server has
no notion of a special window manager client, but there
are some X facilities that are necessary for window manage-
ment that cannot be accessed by more than one X client.
By asserting control of these facilities, mwm effectively locks
out other window manager clients (conversely, mwm is
locked out if another window manager is already running).

The primary facility over which mwm gains control is the
facility for redirecting several types of X requests from
other clients (see Fig. 4). Usually a client makes a request
to the X server to do a function and that function is done
immediately by the server. With a redirected request, the
function is not handled by the X server, but is passed to
the redirecting client (i.e., the window manager). The win-
dow manager decides how to handle the redirected request
and then makes the request, sometimes changing the re-
quest to be compatible with its window management
policies.

The types of X requests that are redirected by mwm in-

clude:

® Window configuration (moving and resizing)

® Window stacking (who’s on top of whom)

Window mapping (display of a window on the screen).

These requests are redirected only when they apply to
top-level client windows, which are windows displayed
directly on the background or root window of the display.
Using its ability to redirect X requests, mwm can control
when, where, and how client windows are displayed.

Once mwm has asserted itself as the window manager, it
can then configure itself and prepare to do event process-
ing. In general mwm has its configuration specified through
resource files like other X clients (see Fig. 5). These resource
files contain user-specific configurations, client-specific
configurations, and screen-specific configurations.

Resources that are specific to fonts, colors, and bit maps
are defined and referenced in general-purpose resource
files. However, not all configuration resources can be con-
veniently specified in a general-purpose file. The mwm re-
source description file (usually called .mwmrc) contains
descriptions of resources that are difficult to specify in the
general-purpose resource files. Mwm menus, mouse seman-
tics, and keyboard semantics are described in the mwm re-
source description file and referenced in other resource
files.

The last thing that mwm does during its start-up phase is
adopt client windows that are currently being displayed.
Mwm assumes control over the placement of client windows
on the screen. In the usual case where mwm is the first
client to be started there will be no clients to adopt.

Process Conventional
Resources

X ce!
(Colors, Boolean Values, etc.)

Process mwm
Specific Resources
(Menus, Key Bindings, etc.)

Adopt Initial
Client Windows

Do Steady-state Event
Processing

Fig. 3. OSF/Motif Window Manager start-up process.

Map Window

0.0

lMap Window
[

Map Requestj ‘ Map Window
| |

|

/

X Server

e‘/

(a) (b)

Fig. 4. Event redirection. (a) If no window manager is running
(no redirection), the client's window mapping is done im-
mediately. (b) When mwm is running, the server redirects the
client's map window request to mwm. Mwm adds its window
border before asking the server to complete the window map-

ping.

Processing

After mwm completes start-up it goes into a loop waiting
for and processing events. Events are messages from the X
server that are generated as the result of some user or client
action.

When a top-level client window is to be displayed on
the screen, the window manager receives a map request
event. In processing the request, the window manager re-
trieves client-specified and user-specified configuration in-
formation to place the client window on the screen. The
client window is reparented to a window manager frame
window. In effect, the client window is placed inside a
window manager frame window. This is the mechanism
that allows mwm to give all clients a common top-level
window border. In the frame window, around the outside
of the client window, are placed the window manager di-
rect manipulation components shown in Fig. 2. Once the
client window is dressed up in its window frame, it is
placed on the screen.

User interaction with the window manager results in
mouse (button and motion) events and keyboard (key)

User’s X Resources
(e.g., SHOME/.Xdefaults)

mwm Client

Application Default Resources v
(e.g., /usr/lib/X11/app-defaults/mwm) X Toolkit

Intrinsics

Routines

mwm Resouces
(e.g.,$HOME/.mwmrc)

Fig. 5. Resource files used by mwm.

JUNE 1990 HEWLETT-PACKARD JOURNAL 15

events. When a user interacts with a direct manipulation
window manager component, a stream of events is gener-
ated. Mwm associates the events with a particular user inter-
face component and invokes the associated function. Im-
mediate visual feedback of the user’s interaction maintains
the appearance and behavior of the direct manipulation
interface.

Users can configure window manager actions to be in-
voked by particular key or button events. This interface to
the window manager is in addition to the standard interface
which is based on direct manipulation of window manager
components. Mwm arranges with the X server to grab button
and key events that invoke window manager functions.
This grab mechanism allows the window manager to get
the events even while another X client window is receiving
keyboard input.

Termination of mwm is triggered when a window manager
function invoked by a user or by an event indicates that
the X server has been shut down. When mwm is terminated,
the window frames that belong to mwm are destroyed. Nor-
mally, all the child windows of a window that is being
destroyed are also destroyed. However, since mwm repar-
ents client windows to their window frames at start-up,
the desirable behavior is for the client windows to be re-
parented back to the background (root) window so that the
clients can continue to run. To accomplish this, mwm uses
the X11 save set mechanism to cause client windows to be
reparented back to the root window when mwm terminates.
By placing all client windows that have been reparented
to window frames into its save set, the windows are automat-
ically reparented back to the root window by the X server
when mwm terminates.

Restart

The restart function is invoked when a user wants to
reconfigure mwm. Restart is necessary because some re-
sources are only read by mwm in its start-up phase. Any
aspect of the mwm configuration can be changed at any time
using the restart function. The window manager restart
function effectively terminates the current instantiation of
mwm and starts a new one. This function is special in that
it causes mwm to make a complete pass through both of its
operational phases. The event that invokes the restart func-
tion is processed in the steady-state event processing phase.
Restart execution begins with the termination of mwm and
completes when mwm starts up again.

OSF/Motif Window Manager
Implementation

Like the features and characteristics of mwm, most of the
code and design for mwm were leveraged from the HP win-
dow manager. The period when hpwm was designed and
implemented was one of rapid change for X and for HP’s
use of X. This had to be taken into account in formulating
an implementation strategy for mwm. For example:
® Hpwm was implemented at the same time that there were

new developments in user interface technologies and

components. However, to minimize risk, stable technol-
ogies were used in favor of the newer ones.
® The user interface components that hpwm used were often

16 HEWLETT-PACKARD JOURNAL JUNE 1990

first-generation products. Therefore, visual and perfor-

mance tuning of these components could not be relied

upon.

= Prototype versions of hpwm were required to refine the
3D visual style, to support usability testing, and to sup-
port prototype application environments.

@ Standards that hpwm used were under development in
parallel with the implementation of hpwm.

The implementation strategy used for hpwm involved sub-
stantial prototyping and design, followed by bottom-up
reimplementation. Prototyping and design accounted for
more than half of the engineering and calendar time spent
on implementing hpwm. Development of a prototype de-
layed dependencies on user interface components and
facilities. The prototype was used to identify visual and
performance problem areas requiring design refinements.
Design decisions were substantiated or changed based on
experience with the prototype.

After the prototype and hpwm, mwm can be viewed as the
third pass on the window manager. The experiences gained
from the earlier efforts were used during the definition and
implementation of mwm. Also, the use of the hpwm engineer-
ing team for the development of mwm allowed for rapid
and effective progress once the functionality was defined.

Widgets and Windows

There are two principal levels in which a programmer
can write a user interface for an X client: the high level
using a widget library like the OSF/Motif widgets and the
low level using the X library. Widgets provide high-level
objects (like menus and buttons) that embody the semantics
of specific user interactions, and the X library provides
only basic window functionality. Since the HP window
manager user interface was implemented using a mixture
of widgets and the X library, mwm was implemented using

a similar mixture of libraries.
Mwm uses the OSF/Motif widgets to implement its menus.

This provides appearance and behavior consistent with
applications that also use the OSF/Motif widgets. It also
leverages the engineering effort that went into the design

™~
——T1 ~
Title Bar o i
Window* < o — S
R 1 |
i | . — |
—
S~
R _ /\
S -
- -
—
b -
[| -8 [\‘\— s h —~
L - L
e " -
~N_—
Client Base Window Resize Frame Root
Window (Matte) Windows* Window Window

*Input only Windows mwm Windows

Fig. 6. Exploded view of an mwm window frame.

and development of the menu widgets.

Mwm does not use any widgets for the window frame
components (title bar, resize handles, and border). To un-
derstand why, it is necessary to examine the decision made
for hpwm. First, at that time, the available widgets did not
offer enough control over the thickness of the 3D beveling
(the top shadow and bottom shadow highlights) to give the
desired 3D effect. The window frame has oddly shaped
pieces and complicated joints that require explicit drawing
by the window manager. Also, the visual design requires

. single-pixel beveling between components of the window
frame.

Second, although using multiple widgets as buttons for
the frame decoration simplified some aspects of event han-
dling, it complicated changing the color of the entire win-
dow frame. Some window managers change only the title
bar appearance to indicate the active window. However,
this can be difficult or impossible to spot depending on
the size of the window and the degree to which it is
obscured. Mwm and hpwm change the color of the entire
frame to indicate keyboard focus. Thus, the functional and

performance needs of hpwm required a solution other than
using the widgets available at the time.

It is important to note that with the latest version of
OSF/Motif widgets, most of the objections that caused the
initial decision not to use widgets for the window frame
have gone away. For example, OSF/Motif provides widgets
called “windowless gadgets” that provide better perfor-
mance than the widgets with windows that we used. How-
ever, there are still some mwm user interface requirements;
such as the resize cursors, that require either widgets with
windows or special processing.

An mwm window frame consists of ten windows for draw-
ing, cursor presentation, and event handling (see Fig. 6).
The main frame window has the root window as its im-
mediate parent. It is an input/output window and is the
window to which frame drawing is done. Above the frame
window are eight input-only windows for the resize han-
dles. Each of these windows has its own cursor to indicate
the type of resize that can be started in that area. The next
layer up includes an input-only title window which is used
to display a different cursor for the title area and partially

This is a fragment of an .Xdefaults file containing some
representative settings for the OSF/Motif window manager.

General Appearance and Behavior Resources

#

Set private mwm button and key bindings (see .mwmrc).
i Mwm*buttonBindings: MyButtonBindings

Mwm*keyBindings: MyKeyBindings

Remove active label from icon decoration and tighten

#

icon placement.

Mwm*iconDecoration:
Mwm*iconPlacement:

image label

Component Appearance Resources

#

Use these colors on the "active" window
(the window that gets keyboard input).

mwm*activeBackground:
mwm*activeForeground:

turquoise
white

Use this color scheme on "inactive" windows.

mwm*background : cadet blue

left bottom tight

font to use for Mwm (different fonts for titles, menus and icons)

Mwm*fontList: helvR18
Mwm*menu*title*fontList: ncenR24
Mwm*icon*fontList: helvB14

Client-Specific Resources

#
#

+ HPterm gets a special icon image

Mwm*HPterm*iconImage:
Mwm*XClock*clientDecoration: border

Mwm*XLoad*clientDecoration:

menu title minimze

+ Reduce frame decoration for xload and xclock.

/users/keith/Bitmaps/terminal.xbm

Fig. 7. A sample resource file
showing some sample configura-
tions for the OSF/Motif window
manager.

JUNE 1990 HEWLETT-PACKARD JOURNAL 17

obscures the upper resize windows. This layer also in-
cludes a base window on which the client window sits.
The base window partially obscures the lower resize win-
dows and is used for drawing the client matte if one is
specified. The client matte is a feature of mwm that allows
the user to create an extra level of distinguishability for a
window by specifying a color for the area below the title
bar window shown in Fig. 6. An example of this feature
isillustrated by the strip labeled optional matte in Fig. 2.

The primary reason there are so many windows is to get
the desired cursor behavior. As the pointer moves into each
resize area, the cursor changes to indicate the type of resize
that can be started in that area. This is accomplished in
mwm by creating input-only windows that overlay the
graphics in the frame window. Each window is created
with a different cursor attribute. A benefit of this, from
mwm’s point of view, is that the X server takes care of chang-
ing the cursor shape when the pointer enters or leaves these
windows. Careful overlapping of the title bar window and
the base window clips the corner resize areas to their
characteristic nonrectangular shapes.

This is an annotated fragment of an .mwmrc file

#

Workspace menu description

Configuration

The mwm approach to configuration can be characterized
in terms of consistency, flexibility, performance, and usa-
bility. These attributes were achieved using the following
techniques.

' The mwm configuration is based on the values of re-
sources set in the resource files. Mwm resource names
are consistent with the standard OSF/Motif widget
names. The names are defined such that a single entry
in a resource file can be used to specify values for related
resources. For example, the background color used for
all window manager components can be specified with
one resource.

Most configuration overhead occurs at start-up and is

avoided during user interaction, when quick feedback

is required.

All mwm resources have default values that are consistent

with the standard Presentation Manager behavior and

3D appearance.

Three types of resources are processed by mwm: general-
behavior resources, component-specific appearance re-

This menu is posted by a button binding (see MyButtonBindings below)
It offers the options of
+ starting an hpterm terminal emulator (80 columns by 42 lines).
+ starting an hpterm that is logged into a remote system (bill).
+ starting an hpterm that is logged into a remote system (dave).
+ refreshing the entire display
+ restarting the window manager °
#
Menu Workspace
({
"Workspace Menu" f.title ‘
hpterm f.exec '"hpterm =80x42&"
bill f.exec '"hpterm =80x42 -T bill -n bill -e rlogin bill"
dave f.exec "hpterm =80x42 -T dave -n dave -e rlogin dave"
no-label f.separator
Refresh f.refresh
Restart f.restart

—

#
key binding descriptions
This key binding replaces the default Shift-Esc binding
that posts the window menu.
#
keys MyKeyBindings
{
Alt<Key>Escape icon|window f.post wmenu
}
#
button binding descriptions
These button bindings
+ post a workspace menu over the root window (screen background)
+ provide an accelerated move function for icons and windows
+ provide an accelerated resize function for windows
#
Buttons MyButtonBindings
{
<BtnlUp> root f.menu WorkMenu
Alt<BtnlDown> icon|window f.move . _ _ o
Alt<Btn2Down> window f.resize Fig. 8. A portion of a file defining
} mwm general behavior resources.

18 HEWLETT-PACKARD JOURNAL JUNE 1990

sources, and client-specific appearance and behavior re-
sources. Fig. 7 shows a portion of a file with some sample

resource settings.
General-Behavior Resources. General-behavior resources

are used to define window manager policies such as direct-
ing keyboard input to a particular client window and
specifying when to install a client window’s color map.
Button and key associations* to window manager functions
are also specified. For example, pressing the left mouse
button with the pointer over the root window can be con-
figured to post a menu. The general-behavior resources are
completely processed when mwm is started.

Fig. 8 shows a portion of the mwm resource file used to
define the button and key associations declared in the sam-
ple Xdefaults file shown in Fig. 7. The first part of the re-
source file, labeled Menu Workspace, defines the appearance
and the functions associated with the menu shown in Fig.
9. For example, for the menu item hpterm, the function f.exec
is executed when hpterm is selected, and the field “hpterm
=80x42&" defines the HP-UX command that is executed by
f.exec to start a new hpterm terminal emulator that is 80
columns by 42 lines in size. The key and button bindings
define the event (key or button selection), the context
(where the event occurred), and the action associated with
key and button selections. From the key binding descrip-
tion in Fig. 8, the key sequence Alt ESC entered while in
an icon or window context would cause the Window menu
to be displayed.

Component-Specific Appearance Resources. Mwm high-
level components include the window frames, icons (small
representations of client windows), and window manager
menus. These components use the same set of appearance
configuration resources. The resources specify the colors
and textures to use for 3D appearance and the font to use
for displaying text. Defining the 3D appearance of a compo-
nent can involve specifying the texture and color for the
foreground, the background, the top shadow, and the bot-
tom shadow of the component. Default component-specific
appearance resources can be used to avoid specifying any

*Also called key bindings

Fig. 9. The Workspace menu described in the .mwmrc file in
Fig. 8.

resources for a monochrome system, and only the back-
ground color on a color system. On a color system the top
shadow, bottom shadow, and foreground colors are gener-
ated algorithmically. The algorithm generates an effective
3D visual appearance based on a background color. New
colors are generated by shifting the RGB values of the back-
ground color. The values are shifted to make the top shadow
color lighter, the bottom shadow darker, and the foreground
color much darker than the background color.

The window frame and icon components have a set of
appearance resources for both active and inactive states.
A component in the active state can receive keyboard input,
and a component in the inactive state cannot. In the case
of a window frame, the client window receives the keyboard
input. For human factors and performance reasons there
is a single 3D color scheme for active components and a
single color scheme for inactive components. Multiple,
client-specific color schemes for active and inactive states
led to problems with identifying the client window that
was supposed to receive keyboard input. Also, interactive
performance is maintained by allocating all component
colors and graphics contexts (graphics state information
used in X drawing requests) at start-up time.
Client-Specific Appearance and Behavior Resources. Re-
sources used by the window manager to customize compo-
nents for particular client windows are client-specific re-
sources. The image in the icon representation of a client
window can be specified. Client-specific colors can also
be specified to color the client icon image and the 3D matte
that fits within the window frame. Client-specific resources
are retrieved based on the resource name or class of a client
window. The resulting X resources and window manager
components are cached to avoid resource processing over-
head when several clients of a particular name or class are
run. This enhances performance because client windows are
placed on the display frequently during user interaction.

Event Processing

Mwm event processing is designed to handle different
types of events and event contexts. The events that are
processed include button presses, pointer motion, window
destruction, and many more. Event contexts define the lo-
cations where the events occurred. These locations include
the root window, widgets, nonwidget window manager
components, the window frame, an icon, and client win-
dows. The window frame has subcontexts such as the sys-
tem menu button, the resize border handle, the title, and
the minimize button.

Table I lists some events that are processed, the contexts
they occurin, and the actions taken when the event occurs.

Events with a root window context generally involve
newly displayed windows, destroyed client windows, or
the invocation of a window manager function that is not
client-specific (e.g., repaint the screen). Events for mwm
menus have a widget context. Events with a nonwidget
context are generally on the window frame and are often
related to user interaction with the direct manipulation
components such as the resize handles. Events with a client
window context are typically notifications about the actual
or desired state of a client window.

The event-processing loop for mwm has the following

JUNE 1990 HEWLETT-PACKARD JOURNAL 19

Table |
Events, Contexts, and Actions

Non- Client
Event Root Widget widget Window
Context Context Context Context
Map Decorate
Window the window
with anew
frame and
placeiton
the display.
Window Remove the
Destroyed frame from
the display
and recover
resources.
Button Post (show) Activate
Press menu. frame com-
ponent
button or
resize
handle.
Pointer Move Move or
Motion selection resize frame
Cursor. outline.
Button Unpost Commit
Release (hide) menu. action.
Change Install
Color Map color map for
window.

flow of control.

® Use the Xt Intrinsic function XtNextEvent to retrieve the
next event sent by the X server.

Identify the event context. Events are always reported
relative to some window. The X context manager, which
is accessible through X library functions, is used to as-
sociate mwm contexts and data with the window iden-
tifiers provided in events.

® Dispatch nonwidget events to the appropriate event
handler and dispatch widget events using the Xt Intrinsic
function XtDispatchEvent.

1 Goback to the start of the event loop to get the next event.

Mouse Event Processing. Much of the behavior of the win-

dow manager interface is based on how mouse events are

processed. Mwm divides mouse event processing into two
categories: mutable behavior event processing and immu-
table behavior event processing.

Immutable behavior is built into mwm and is associated
with the direct manipulation features (title bar, resize han-
dles, etc.) of window frames and icons. Each direct manipu-
lation feature has its behavior encapsulated in mwm event
processing. Button press-and-release events and mouse mo-
tion events that occur with a context corresponding to a
direct manipulation feature are processed by the event
handler for that feature.

20 HEWLETT-PACKARD JOURNAL JUNE 1990

Mutable behavior event processing is based on user
specification of mouse event associations with window
manager functions. For example, button three of the mouse
can be associated with the minimize function such that
whenever button three is pressed with the mouse pointer
over any part of the client window or window frame, the
window will be minimized.

Mwm maintains a table that associates mouse events with
window manager functions, and it uses this table for decid-
ing which window manager function to invoke.
Keyboard Input Focus Event Processing. The window with
the keyboard input focus is known as the active window.
What this means is that when a key is pressed, the input
is applied to the window with the keyboard input focus.
Moving the keyboard input focus between windows is an
important window manager function.

Two behaviors are supported by mwm for setting the
keyboard input focus: explicit selection and pointer-rela-
tive selection.* Explicit selection means that a specific win-
dow is designated to be the keyboard input focus window.
Explicit selection of the input focus is Presentation Man-
ager behavior. For pointer-relative selection, the window
under the mouse pointer automatically becomes the
keyboard input focus window. This behavior is favored by
many technical users.

Very different event processing is needed to handle the
two different keyboard input focus behaviors. Setting the
keyboard input focus in pointer-relative mode is done using
enter and leave window events. When the pointer enters
a window frame, mwm receives an enter window event.
Mwm responds by making a request to the X server to cause
delivery of keyboard input to the client window. As long
as the pointer remains over the window frame (or the client
window), keyboard input will be delivered to the client
window. This maintains the illusion that the window frame
is just another part of the client window. When the pointer
leaves the window frame, a leave window event is received.
This is usually followed by an enter window event as the
pointer enters the root window or another window frame.
Mwm responds by resetting the keyboard input focus ap-
propriately.

Event processing for explicit selection of the keyboard
input focus primarily involves button press and key press
events as opposed to enter and leave window events. When
a button press event is received by mwm and the context is
a client window that does not have the keyboard input
focus, mwm calls the X server to cause the delivery of
keyboard input to the client window.

Mwm has to take care when it is processing button press
events. Usually button events go to the window that is
under the mouse pointer at the time the button is pressed
or released. This means that if the pointer is over a client
window and the button is pressed, the client window
would normally get the button press event and mwm would
not see an event. Mwm handles this by establishing a passive
grab of the button event when it is generated in the client
window context. A passive grab of the button causes the
event to be delivered to mwm and not to the client window
(see Fig. 10a). Mwm has effectively stolen a button event
that would normally belong to the client window.

*Also known as tracked listener and real-estate driven

This is not very friendly because the stolen event is often
a mouse button 1 press event which, according to Pres-
entation Manager, is also used to do selections of user
interface components in the client window. Mwm redeems
itself by making the button event available to the client.
After mwm sets the keyboard input focus, it replays the
button press, causing the event to be delivered to the client
window (see Fig. 10b). Mouse event processing by the
server is then allowed to continue, and mouse events that
occur after the button press are delivered to the client win-
dow (if the client window is interested in the events). While
a client window has the keyboard input focus, mwm turns
off its passive grab request for a button press.
Interactive Pointer Tracking. A direct manipulation inter-
face has to work hard to provide good feedback to the user.
An example of this occurs during interactive moving or
sizing of windows in mwm. Mwm draws a frame outline that
tracks the new position or size of the window as the user
moves the mouse around. Making this operate smoothly
and efficiently requires some interesting event processing.

All X window managers provide a feedback mechanism
like the one described above. Many do so by polling the
position of the pointer (mouse cursor) and drawing a new
outline (erasing the old) when the position changes. This
has the advantage of keeping the window manager and the
server synchronized, providing smooth behavior. The dis-
advantage is that the polling continues when the pointer
is not moving, using up network bandwidth if the window

Mouse Button
Press 4

(a) Time

Processed by mwm Replayed for Client

Mouse Button
Press

Mouse Button
Press

Mouse Event
Is Blocked
by X Server

(b) Time
Fig. 10. (a) Mouse input stolen by mwm using a passive
grab. The short arrow indicates that the button event never
makes it to the client. (b) Mouse input intercepted by mwm
and replayed.

manager is running remotely.

The first implementation of hpwm, forerunner of mwm,
departed from polling by requesting the server to report
pointer motion events only when the pointer moved. Thus
the drawback of polling was avoided. However, when the
pointer moves, a large number of events must be processed.
This was not a problem on medium-to-high-performance
workstations that could keep up with the flood of events,
but a problem did occur on low-performance machines,
particularly X terminals. The time to process each motion
event was longer than the time to generate a new one,
causing the user to observe a window outline that would
fall behind the motion of the pointer.

The solution to the problem, implemented in mwm (and
a later hpwm), is to request the X server to send pointer
motion hints, which are a special type of pointer motion
event. In this mode of operation, the X server only sends
pointer motion hints in conjunction with certain other
events, such as window exit and entry. The X server also
sends a pointer motion hint when the pointer moves from
the last position queried by mwm. Each time a pointer mo-
tion hint is received, mwm acknowledges it by querying the
position of the pointer. It then moves the pointer outline
based on the values returned by the query. Tracking the
pointer position with pointer motion hints is more expen-
sive than polling when the pointer is moving, but it avoids
the polling burden when the pointer is not moving.

Adopting a Client Window

Adopting a window refers to the process that mwm goes
through when it initially encounters a window that it does
not yet manage. This happens with the set of client win-
dows that are on the display before mwm is started, as well
as with clients that are started after mwm is already running.
For each window that it adopts, mwm collects information
from the client and the resource data base that affects the
appearance of the window border, the placement of the
window on the screen, and the window’s behavior in re-
sponse to user actions.

Communication between an X client and an X window
manager occurs through events and properties (special in-
formation associated with a window). Among the events
that are processed by mwm are those that begin or terminate
management of X clients. The properties allow the client
to indicate placement, decoration, and behavior informa-
tion.

Mwm becomes aware of a new client when it receives the
client’s redirected request to display (or map) its top-level
window. Mwm responds to this event by:
® Examining several client window properties
Constructing a window frame and icon for the window
= Reparenting the client window to the mwm window frame
= Placing the client window on the display.

Several properties are used in this client-window man-
ager communication. Some are listed in Table II.

The initial position and size of a window can be set
either programmatically or interactively by the user. This
information is passed to mwm in the WM_NORMAL_HINTS
property of the client window. The value of this property
is what determines how mwm places the window. Mwm will
let the user place the window interactively if mwm’s interac-

JUNE 1990 HEWLETT-PACKARD JOURNAL 21

Table i
Window Properties
Property Use
_MOTIF_WM_HINTS Frame decoration and function
preferences
_MOTIF_WM_MENU Modify window menu

WM_CLASS Client class for fetching resources

WM_HINTS Iconimage

WM_ICON_NAME Icon name

WM_ICON_SIZE Icon sizes preferred by window
manager

WM_NAME Client window name

WM_NORMAL_HINTS
WM_PROTOCOLS

Window position and size

Client-window manager
communication

WM_STATE
WM_TRANSIENT_FOR

Window manager state for client

Secondary window indicator

tive placement is enabled and if the initial position has
been set programmatically. However, if the initial position
has been set by the user (e.g., via a command-line option),
interactive placement will not be done even if it is enabled.

Mwm manages windows, not clients. If a client uses sev-
eral top-level windows, mwm will treat them all equally
even though they may have different purposes. However,
a client may indicate a secondary top-level window, such
as a dialog box, by placing the WM_TRANSIENT_FOR property
on it. Mwm will decorate a window with this property dif-
ferently, using a separate decoration resource for secondary
windows. Mwm will not place a secondary window inter-
actively.

In addition to reading properties when the window is
adopted, mwm tracks changes to some of the properties
while the client is running. The client may change the
name displayed in the title bar by changing the WM_NAME
property. Similarly, the client may change the name dis-
played in the icon by changing the WM_ICON_NAME property.
Window geometry (i.e., size, position, and resize incre-
ment) changes are also tracked in WM_NORMAL_HINTS to
make sure that resize units are properly reported. For exam-
ple, a terminal emulator may resize its window to display
function keys, but the number of text rows reported as the
window size should not change.

Menu Handling

Mwm supports both client-specific and general-applica-
tion menus. The contents of client-specific window menus
and general-application menus can be specified by the user.
The user can also specify the button or key event that
causes a menu to be posted and the context for the event
(e.g., post a utility menu when mouse button 1 is pressed
with the pointer in the title area of the window frame).
Everything that can be done with menus using a mouse
can also be done using a keyboard.

Presentation Manager behavior includes a client-specific

22 HEWLETT-PACKARD JOURNAL JUNE 1990

window menu that is posted using the window menu but-
ton on the window frame. The window menu is like a
pull-down menu. It appears below the window menu but-
ton when the pointer is moved over the window menu
button and the selection button (on the mouse) is pressed.
A selection is made by dragging the pointer to a menu item
and releasing the selection button. A client-specific win-
dow menu can also be posted by a button or key event in
the client icon context.

To the user it may seem that mwm supports a large number
of menus. This is because each client window has a menu
that is posted from the window menu button, and each
client icon has a menu that can be posted with a key press
(typically shift ESC). There are also menus that are com-
monly used to start clients and to perform various window
management functions (e.g., change the stacking order of
client windows). The heavy use of menus, combined with
the relatively high performance cost of making menus, led
to the design of a menu cache for mwm. A menu cache is
possible because many menus have the same menu items.
Also, the flexibility of the OSF/Motif menu widget allowed
mwm to use a pop-up menu type for all the menus. Mwm
uses the OSF/Motif pop-up menu type to implement win-
dow menus and simulates pull-down menu behavior when
a menu is posted using the window menu button.

Mwm keeps a list of menu specifications. When mwm
makes a menu it starts with a particular menu pane specifi-
cation. The workspace menu entries given in Fig. 8 illus-
trate a menu specification. Other menus can be specified
to cascade from the starting menu (see Fig. 11). When a
menu is made, an association is made between the menu
and the initial menu specification. Subsequent calls to
make the same menu will return the menu that is already
built. The key to making this work is the capability of mwm
to adjust the characteristics of the menu dynamically so
that the menu is set up correctly for the context in which
it is posted.

Mwm adjusts the following menu characteristics:
® The active and inactive appearance and behavior of

menu items are matched to the context in which the

menu is posted. Menu items that are not applicable in

a particular context are grayed out and are not selectable.

For example, a menu item that minimizes a client win-

(continued on page 24)

Menu Workspace

“Workspace Menu”
L]
L]

Refresh

Restart
L]
L]
“Systems” Menu Systems
“‘Systems”

A
B
L]
L]
E

)
Fig. 11. The Systems menu is cascaded from the Workspace
menu because of the entry in Workspace that calls the Systems
menu.

Interclient Communication Conventions

The X Window System Version 11 (X) was designed to be a
platform on which windowed application environments could be
built. It provides a basic set of mechanisms for building these
environments and does not impose any particular user interface
behavior. With a minimal set of constraints on behavior an X-
based application (X client) may be usable in isolation but unable
to coexist with other X clients. Coexistence entails civilized shar-
ing of limited resources (e.g., the physical color map) and the
use of standard mechanisms for exchanging information (e.g.,
cutting and pasting text). A window manager can enforce coexis-
tence of X clients in areas such as the use of screen space and
keyboard input, but even a window manager does not have
absolute power to maintain order. An unfriendly X client could
grab the X server and prevent other X clients from getting input
or doing output.

Inter-Client Communications Conventions Manual
Early in the development of X, representatives from the different
companies working on or with X started meeting to address the
problem of X client coexistence. This group has been officially
sanctioned by the X Consortium to develop interclient communi-
cation conventions. The conventions that have been developed
are documented in the Inter-Client Communication Conventions
Manual (ICCCM). ICCCM compliance has become a key design
criterion for X clients. The development of the ICCCM is ongoing
and the general goals that shape this development include:
B Improving client coexistence in areas of potential contention.
= Tracking the evolution of the X Window System and X clients
and providing new conventions that are generally applicable.
® Adding X Window System support for new conventions.
® Ensuring that all ICCCM changes are backwards compatible.
This means that all previously defined conventions are main-
tained, and old conventions are changed only when they
clearly cause incorrect behavior.

Client-To-Window-Manager Communication

Many conventions are documented in the ICCCM. However,
the conventions that have received the most attention by X client
developers have been those dealing with client-to-window-man-
ager communication. A key goal of the mwm design was ICCCM
compliance. X clients that are ICCCM compliant can coexist in
a predictable manner with mwm and with each other. Window
properties are one of the X mechanisms for client-to-window-
manager communication. A window property is a collection of
information of a particular type that is associated with a window.
Clients associate, by convention, several properties with their
windows to communicate with the window manager. Noteworthy
examples of properties that are used for client-to-window-man-
ager communication are WM_NORMAL_HINTS and WM_PROTO-
COLS. The WM_NORMAL_HINTS property deals with window size
and positioning, and WM_PROTOCOLS deals with public or private
window manager communication protocols.

Client Window Size And Position

The WM_ NORMAL_HINTS property is used by a client to give a
hint to the window manager on how the client window should be
positioned on the screen and what its size should be. The window
manager enforces how a client is positioned and sized on the
screen. Some window managers may enforce a policy where all
client windows are tiled on the screen (displayed without overlap-
ping), or where windows are not allowed to be displayed with

part of the window off the edge of the screen. The WM_NORMAL_

HINTS property provides the window manager with a starting

point from which it then applies the screen layout policies. An

ICCCM compliant window manager can ignore some or all of

the information contained in the WM_NORMAL_HINTS property. An

X client should be designed to be robust enough to work in

environments where this is the case. This demand on X clients

is based on an ICCCM principle that the user is in control of the
user interface, not the X clients.

The WM_NORMAL_HINTS property contains the following pieces
of information:

Minimum and maximum window sizes. These are reasonable
minimum and maximum sizes for the window. Mwm uses the
maximum size when a window is maximized.

= Base and increment window sizes. The overall window size is
the base size plus some number of increments. Mwm adjusts
a window size to meet this constraint when the window is
initially placed on the screen or following resizing by the user.
This is especially useful when the window is associated with
a terminal emulator X client. The base window size usually
includes the height of the softkeys. The increments are set to
be equivalent to the height and width of one of the characters
displayed in the terminal emulator window (terminal emulator
X clients use fixed-size fonts in which all characters are the
same size).

® Minimum and maximum window aspect ratios. The aspect

ratios indicate allowable values for the ratio of the window

width to the window height. For example, an X client can indi-
cate that it would always like to be displayed in a square

window (the aspect ratio is 1:1).

Anchor point for window placement. The anchor point for plac-

ing a window allows an X client to specify how the window

position should be interpreted. This is useful in the case where

a window manager adds a frame around the X client window

and adjusts the position of the X client window on the screen.

The X client can specify an anchor point such that a corner

or side of the X client window, including the window manager

frame, is placed at a particular absolute location on the screen.

In general, mwm uses the WM_NORMAL_HINTS information with

little or no change to place an X client window. Adjustments are

only made if the user requests some refinement of the mwm
window placement policy (e.g., the user requests that windows
be interactively placed when they are first displayed). In placing
an X client window on the display, mwm first determines a desir-
able window size, which is usually the window size specified by
the X client. Mwm then retrieves the WM_NORMAL_HINTS property.

The processing of the WM_NORMAL_HINTS property varies
based on the version of the ICCCM that the associated client
implements. Mwm uses the size of the property in figuring out
which version of the ICCCM to use. This allows mwm to be back-
wards compatible in complying with the ICCCM.

Client and Window Manager Protocols

The WM_PROTOCOLS property is used by an X client to indicate
interest in public or private window-manager-to-client communi-
cation protocols. In general, these protocols are used to inform
an X client of some window manager action that has occurred
or is about to occur (e.g., the window system is about to be
terminated). Public protocols are registered by the X Consortium,
specified in the ICCCM, and supported by most, if not all, ICCCM
compliant window managers. Private protocols are specific to a

JUNE 1990 HEWLETT-PACKARD JOURNAL 23

particular window manager. Private protocols that have high utility
and widespread acceptance by X client developers usually be-
come public protocols.

The WM_PROTOCOLS property is formatted as a list of protocol
identifiers. Many window managers, including mwm, keep track
of X client changes to the property. This allows an X client to
participate only in those protocols that it requires at a particular
time. The WM_PROTOCOLS list can accommodate any number
and mix of public and private protocols.

The WM_DELETE_WINDOW protocol is a commonly used public
protocol. This protocol is used to inform X clients that a request
has been made (probably by the user) to get rid of an X client
window. This protocol is used by window managers to implement
a clear and consistent user interface for getting rid of windows.
Typically, deleting a window also includes deleting the X client
that is associated with the window. Mwm uses the WM_DELETE_

(continued from page 22)

dow is grayed out if the menu is posted in the icon
context.
A menu is placed in keyboard traversal mode to allow
keyboard manipulation of the menu. However, if a menu
is not posted using a key press, the menu is not placed
in traversal mode.
A menu is configured to have particular key and button
events select a menu item and unpost the menu.
A menu is posted at a particular screen position (e.g.,
below the window menu button in a window frame).

« Mwm keeps track of the currently configured characteris-
tics of a menu and does the minimal amount of adjust-
ment that is necessary before posting the menu.

Component Graphics

The window frame provided by mwm for decorating client
windows consists of a number of components representing
different window management functions. The functional-
ity and layout of the components are the same as in Presen-
tation Manager. However, mwm enhances the appearance
of the frame by adding the 3D appearance.

It is important for mwm to be as fast as possible to imple-
ment a good direct manipulation interface. The two princi-
pal things that were done to speed up the graphics render-
ing were to minimize the number of X protocol requests
to draw the frame, and to do all the drawing to one window.

A fully configured mwm window frame consists of a bor-
der and a title bar. The border is divided into eight resize
handles. The title bar is divided into boxes (or gadgets) for
the system menu, the title text, and the minimize and
maximize functions. The height of the title bar and the
drawings inside the gadgets are scaled to match the height
of the font used for the text in the title bar.

A frame with the 3D look may have as many as four
colors displayed at once. These are the background, the
foreground (title text), and the top shadow and bottom
shadow colors (see Fig. 12). The background color makes
up the majority of the color visible in a frame. Mwm sets
the background color of a frame by setting the background
attribute of the frame window. The background of all the
frame components is set in one X graphics call. Once this
attribute is set, the X server takes care of painting the back-
ground of the window in response to exposure events.

Graphic contexts are used to store much of the informa-

24 HEWLETT-PACKARD JOURNAL JUNE 1990

WINDOW protocol to close a window. The mwm close function can
be accessed from the standard window menu that is posted by
pressing the window menu button in the client window frame. If
the close function is invoked on a client that does not participate
in the WM_DELETE_WINDOW protocol, mwm uses the X request
XKillClient to get rid of the window and terminate the client. In this
case the client finds out that it has been terminated but cannot
prevent or delay the termination. This is not appropriate for clients
that would like to interact with the user on termination, or clients
that have multiple windows that can be independently terminated.
If a client does participate in the WM_DELETE_WINDOW protocol,
mwm sends a termination request message to the client indicating
that the window is to be terminated. It is then up to the client to
determine how to deal with the window, because mwm takes no
further action. Well-behaved clients immediately remove the win-
dow from the screen or prompt the user for confirmation.

tion required by the X graphics routines. This includes
items such as colors, line styles, and clip regions. Mwm
creates several graphic contexts for use in drawing the
frame. These graphic contexts may differ in foreground
color and fill tile. They are created when the window man-
ager starts up and are used for all the window frames. When
mwm draws a differently colored part of the frame, it passes
a different graphic context to the graphics drawingroutine.

The title text is usually drawn in one XDrawString call
using the graphic context containing the foreground color.
If the text is too long for the available space, then the text
is truncated by setting a clip rectangle into the graphic
context before calling XDrawString.

The remainder of the frame is made of the top and bottom
shadow colors. This includes the outer 3D shadowing, the
separations between the resize handles, the edges of the
title bar buttons, and the images inside the system
minimize and maximize buttons. This drawing is done
with only two calls to XFillRectangles.

XFillRectangles takes, among its arguments, a list of rectan-
gles and a graphics context. Mwm generates two lists of
rectangles for top and bottom shadows when a frame is
built. This occurs whenever a frame is needed for a new
window, or when a window has been resized. To make
this task simpler to code, two helper routines were con-
structed to add data to an existing pair of lists. One routine
adds the top and bottom shadows to construct rectangular
features. The other routine adds the top and bottom
shadows to construct the corner resize handles. The
shadowing for the entire frame is constructed out of mul-
tiple calls to these two routines.

Mwm always redraws the entire frame in response to an
exposure event. In the best case, this takes three X graphics
calls for drawing the text and the top and bottom shadows.
If the text is clipped, then two more X calls are required
for setting and clearing the clip rectangles. If the back-
ground color of the frame changes, then two additional
calls are needed to set the frame window background attri-
bute and clear the window to the new background. The
common case of setting or clearing the focus indication on
a window frame takes five X graphic calls.

The performance of this frame redrawing algorithm has
been adequate. A possible optimization would make the
exposure event handling smarter by only drawing those

Foreground Background

areas that need to be drawn. This would require either
generating a new list of rectangles for the exposed region,
or picking out the affected rectangles from the list of rect-
angles for the whole frame. Since X drawing calls map into
X protocol requests (which can be computationally expen-
sive), the optimization would have to avoid generating
more X protocol requests than the approach taken above.

Testing a Window Manager

Mwm has a programmatic interface that is used by clients
and an interactive interface for users. The testing of mwm
needed to cover both of these interfaces. The approach to
testing the programmatic interface involved writing a
number of special-purpose clients that systematically gen-
erated all of the events that the mwm programmatic interface
handles. These programs were run for each regression test
as mwm progressed through its various development re-
leases.

The testing of the interactive mwm interface required a
much different approach. The interactive nature of the in-
terface precluded the use of test programs. Testing could
have been accomplished by developing test scripts that
testers would follow for each regression cycle and each
tested hardware configuration. However, this is an ex-
tremely tedious and expensive approach to testing.

Fortunately the Xtm (X test monitor) testing tool was de-

Shadow

Bottom
Shadow

Top

Fig. 12. The four colors involved
in achieving the 3D look for a
frame.

veloped for testing interactive X clients. Xtm is based on
the record-replay software testing technique.*®® In this
technique human interactions with the system are recorded
in afile and replayed later for regression testing. Xtm records
all mouse and keyboard interactions and saves them in an
interactive test script file. The tester can at any time save
snapshots of all or part of the screen. For regression testing
the Xtm interactive test scripts can be replayed. Xtm com-
pares the saved screen images with the replay screen images
and flags any differences. A tester only has to spend time
recording the interactive test script and checking the results
of the automated regression tests. Use of Xtm also allowed
repeatable testing. A user could not be expected to move
a pointer in exactly the same way or remember what a
screen looked like down to a single pixel each time a test
script is followed.

Mwm testing also benefited from the wide distribution it
received through OSF. Mwm was made available to a sizable
number of people at OSF member companies including
HP. These users had a variety of software and hardware
environments as well as different patterns of use and expec-
tations from a user interface. Their input provided a useful
adjunct to the testing done using Xtm.

Acknowledgments
We would like to acknowledge all those that helped with

JUNE 1990 HEWLETT-PACKARD JOURNAL 25

the development of mwm. First are the other members of
the mwm (and hpwm) team: project manager Karen Helt, Fred
Handloser, and Paul McClellan. Shizunori Kobara’s help
was instrumental in designing a good-looking window
frame. Finally, we would like to acknowledge the Open
Software Foundation for its vision in promoting industry
standards and for picking hpwm as the basis for the OSF/
Motif window manager.

References
1. F. E. Hall and J. B. Byers, “X: A Window System Standard for

Distributed Computing Environments,” Hewlett-Packard Journal,
Vol. 39, no. 5, October 1988, pp. 46-50.

2. Hewlett-Packard Journal, Vol. 40, no. 6, December 1989, pp.
6-46.

3. Ibid, pp. 33-38.

4. C.D. Fuget and B.J. Scott, “Tools for Automating Software Test
Package Execution,” Hewlett-Packard Journal, Vol. 37, no. 3.

5. K.A. Olsson and M. Bergman, ““A Virtual User Simulation Util-
ity,” Hewlett-Packard Journal, Vol. 39, no. 2, April 1988, pp. 48-53.
6. M.R. Tuttle and D. Low, “Videoscope: A Nonintrusive Test
Tool for Personal Computers,” Hewlett-Packard Journal, Vol. 40,
no. 3, June 1989, pp. 58-64.

Programming with HP OSF/Motif Widgets

The HP OSF/Motif widget library makes it easy for a
developer to create applications with a graphical user
interface that has a consistent appearance and behavior.

by Donald L. McMinds and Benjamin J. Ellsworth

as X) is widely recognized as the industry standard

window system for UNIX-system-based workstations
X’s greatest attribute is the fact that applications written
for one vendor’s platform will run on almost any other
platform without modification. X provides a root window
within which smaller windows can be displayed. A number
of applications can be run simultaneously and each appli-
cation can have any number of windows. A workstation
screen with a typical assortment of windows is shown in
Fig. 2 on page 7.

The X Window System is composed of a set of library
functions known as Xlib. Xlib is the heart of X and it can
be compared to an assembly language. Like assembly lan-
guage programming, creating a user interface using only
Xlib can be tedious and cumbersome (an example of Xlib
programming is provided later in the article). To overcome
this problem, the X designers created a second set of func-
tions called the Xt Intrinsics or the X toolkit. The Xt Intrin-
sics use the Xlib functions to provide a higher-level set of
functions that make user interface programming easier. The
next library in the hierarchy, widgets, was designed to use
both Xlib and the Xt Intrinsics to relieve the programmer
of much of the extra work required to use these functions.
The relationship between the two sets of X functions (Xlib
and Xt Intrinsics) and widgets is much the same as the
relationship between a computer’s assembly language and
a high-level language such as C.

The user communicates with X through the window
manager. Depending on the request, the window manager
communicates directly with one of the lower-level compo-
nents in the hierarchy shown in Fig. 1 or with the X client.
The window manager is really just another X client (al-

T HE X WINDOW SYSTEM (usually referred to simply

26 HEWLETT-PACKARD JOURNAL JUNE 1990

though admittedly a very special one).

The box on page 27 provides more information about
the evolution and development of widgets. This article
describes some characteristics of the HP OSF/Motif widget
library and shows how to write a program using this library.

Widgets
Widgets provide a base upon which the programmer can
build an application user interface that has a consistent
behavior and appearance. Widgets have a hierarchical class
structure. Each widget has some resources of its own and
(continued on page 29)

HP OSF/Motif Window Manager

T L

Other X Clients

|
HP OSF/Motif Widgets

Fig. 1. The X Window System and other components in the
OSF/Motif environment. The dashed line indicates that other
X clients can either be managed by the window manager or
run independently of the window manager.

The Evolution of Widgets

The development and acceptance of any new technology in
the software industry as a standard is an evolutionary process
that is driven by such things as competition, new technologies,
and the desire for interoperability over a wide variety of hardware
platforms. This is the case with HP's OSF/Motif widget toolkit.
This toolkit and the Xt Intrinsics were developed to provide a
standard set of tools for implementing user interfaces for UNIX-
system-based systems running in the X Window System environ-
ment.

Fig. 1 shows the family tree for widgets in relation to the different
versions of the Xt Intrinsics used to implement them. The Xt
Intrinsics are the foundation upon which many user interface
toolkits that run in the X Window System have been developed.
The Xt Intrinsics began as the result of a collaboration between
HP and Digital Equipment Corporation in late 1986 and early
1987. At the end of this period, the Xt Intrinsics were contributed
to the X Consortium.* The X Consortium accepted the Xt Intrinsics
as a nonexclusive standard for the creation of user interface
toolkits for the X Window System environment.

The first freely available set of software objects (widgets) based
on these early intrinsics was done by Project Athena at Mas-
sachusetts Institute of Technology. The Athena widgets, because
they were the first widgets and their development was not particu-
larly profit motivated, had a few bugs and did not offer much in
terms of functionality. The Athena objects provided only buttons,
scroll bars, editable and noneditable text, and boxes to contain
them. Perhaps more important than the functionality, the Athena
widgets presented a basic model of interaction supported by
the Xt Intrinsics.

Xt Intrinsic
Revisions

Revision 1

HP’s First Widgets

HP's first X Window System user interface toolset was called
x-ray. Xray was written in the C language and tailored to run in
version 10 of the X Window System. Although this was a good
toolset by everyone's estimation, it was realized that tools built
on a standard base such as the Xt Intrinsics would have a better
chance of long-term success. Therefore, x-ray was abandoned
and work began on the HP X widgets, or as they were eventually
called, CXI (common X interface) widgets.

HP’s experience with x-ray helped to determine the feature set
necessary for a successful user interface toolkit. Although we
knew what we wanted to provide the customer, we were novices
in using Xt Intrinsics. To accelerate our code production, the
Athena widget code was used as the basis for the first widgets.

Simple widgets were created using a combination of the func-
tionality inherited from methods in the core class widgets and
the features provided in existing widgets. For this reason, many
HP widgets started as a copy of an existing simple widget (the
Athena label widget and the CXI button widget were the most
commonly used). The core class methods were then modified
until the desired change in functionality was achieved.

For more complicated widgets, two approaches were used.
Either a simple widget was repeatedly modified until the complex
functionality was achieved (the title bar widget is an example of
this), or a closely parallel Athena widget was reworked and de-
bugged as necessary (text and paned widgets are examples of
this).

The New Generation
The key features that differentiated the CXI widgets from the

Revision 2

Revision 3

Final CXI
3D

Revision 4

family.

Fig. 1. The widget family tree. Dif-
OSF/Motif ferent improved versions of the Xt

1.0 Intrinsics were used to implement
different versions of the widget

JUNE 1990 HEWLETT-PACKARD JOURNAL 27

Athena widgets were keyboard traversal, a configurable menu
system, and Presentation Manager behavior. Keyboard traversal
is keyboard-only operation of the user interface without touching
the mouse. As an example, consider a property sheet or a data
entry form that contains numerous fill-in-the-blank fields. In the
model presented by the Athena widgets, the user had to move
the mouse every time there was a need to move to a different
field. Touch typists complained that reaching for the mouse inter-
rupted them to such a degree that they felt the interface was
unusable. By offering keyboard traversal, the CXI widgets pro-
vided a way to navigate through the interface without ever having
to leave the keyboard.

The most significant evolutionary feature of the CXI widgets,
certainly in terms of product strategy, is the Presentation Manager
behavior. Presentation Manager is itself a user interface that has
evolved from Microsoft Windows and is characterized by a base
set of graphical controls with consistent behavior. While the X
Window System is primarily for the technical workstation market,
much of the technical workstation market comes from users mov-
ing from personal computers to workstations. Often PC users are
hesitant to move to technical workstations because the software
environment appears foreign and therefore is presumed hostile.
To make the move from personal computers to workstations
easier, programs written using the CXI| widgets present the user
with an interface that behaves very much like Presentation Man-
ager.

A New Dimension in Widgets

In 1988 we discovered that we needed to have a unique visual
appearance for our widgets. This resulted in the development
of widgets with a 3D appearance (see Fig. 2). This look was
different enough to be considered proprietary. At this point we
had two widget libraries: a 2D widgets library, which was contrib-
uted to the public domain, and a 3D widget library, which was
proprietary. The 2D version of widgets, which became known as
Xhp widgets, provided the basis for the XT + toolkit from AT&T
Bell Laboratories.

Soon after the release of the CXI 3D widget library, revision 3
of the Xt Intrinsics became available. Since there is always the
urge to use the latest technology, a version of the CXI widgets
was implemented using the latest Xt Intrinsics. One of the prob-
lems with the earlier version of CX| widgets was that it imposed
the overhead of one window for every widget. Revision 3 of the

* The X Consortium is a group of companies that have joined together to promote
standards and enhancements for the X Window System technology

BUTTON Athena

BUTTON CXI 2-D

BUTTON

BUTTON

28 HEWLETT-PACKARD JOURNAL JUNE 1990

Xt Intrinsics removed this problem by providing the ability to
support windowless objects.

Open Standards

With the formation of the Open Software Foundation (see box
on page 8), the role of CXI widgets took on a whole new meaning.
In mid-1988 the newly formed Open Software Foundation re-
quested members from the entire computer industry to submit
proposals for a technology for creating an OSF user interface
environment. After this industry-wide solicitation and review pro-
cess, the OSF chose a hybrid of two proposals, both based on
widget technology. HP was contracted to do the engineering
work required to create this hybrid, the OSF/Motif widget set.

The OSF/Motif widget set is a combination of widget technology
from HP’s CXI and Digital Equipment Corporation's XUl. This
hybrid provides the look and feel of CXI and the application
programmer’s interface of XUI. In late summer of 1989, version
1.0 of the OSF/Motif widget library was made available. All of
the external features of the CXI| widgets were improved upon
and incorporated into the OSF/Motif widgets. The three-dimen-
sional visual interaction clues were extended and made more
consistent. Keyboard traversal was extended uniformly through-
out the widget set and made almost entirely consistent with Pres-
entation Manager. All other graphical controls such as menus
and scroll bars were also made consistent with Presentation
Manager behavior.

One of the most significant contributions XUl made to the OSF/
Motif widget set was the addition of a rich dialog layer. XUl
presents a large number of standard dialog boxes with a number
of standard behaviors. These dialog boxes have been made
visually consistent with CXI and behaviorally consistent with Pres-
entation Manager.

A Process, Not a Result

OSF/Motif 1.0 is currently the top of the evolutionary chain for
OSF/Motif widgets. However, the evolution of technology is much
more a process than a result. Changes to the OSF/Motif widget
set are already underway with the development of even better
user interface components. More important, changes in the in-
dustry customer base and advances in such technologies as
graphics hardware, object-oriented programming, cooperative
work, and distributed networking will continue to change the
environment of the software industry and to provide a fertile soil
for widget evolution.

Ist CXI 3-D

Fig. 2. The evolution of the ap-
pearance of widgets from 2D to
3D with the beveled look.

Final CXI 3-D

Top-Level Shell =————

Bulletin Board
Widget

Pushbutton

Widget e P”sh Herve

can inherit resources from higher-class widgets. Resource
simply means a data name or variable whose value affects
some attribute of the widget. For example, there are re-
sources that control the size, color, and behavior of widgets.
Most widgets are visible in the form of a window. Examples
of widgets include various types of buttons, scroll bars,
menus, and dialog boxes through which information is
exchanged. Some widgets cannot be made visible and are
used as supporting superclasses. These widgets supply
common resources for the other widgets.

Fig. 2 shows how widgets are combined to produce a
window. The program output consists of a bulletin board
widget and a pushbutton widget. The program that pro-
duces this output is described later. The top-level shell
widget is an invisible widget that provides resources and
communicates with the X server.! The frame around the
visible output is provided by the OSF/Motif window man-
ager and is not a part of the widget system.

A widget is composed of procedures and data structures
that make use of the Xlib and Xt Intrinsics functions. The
functionality provided by the few lines of code needed to

Core

XmPrimitive

XmLabel

XmPushButton

Fig. 3. Basic widget hierarchy.

Fig. 2. Exploded view of widgets
in a program.

create a widget on the screen can only be duplicated with
many lines of code using Xlib and Xt Intrinsics functions.
While widgets save coding time and make a program much
easier toread and comprehend, the trade-off is that a widget
program uses a lot more memory than an Xlib program.
The program presented in this article uses nearly 680K
bytes for the executable widget version and 140K bytes for
the executable Xlib version.

Widget Hierarchy

The X toolkit defines widgets. To do so, it uses an object-
based architecture that groups widgets into different class-
es. Each widget class has data structures and procedures
(methods) that operate on the data. Widgets also define
what data can be imported and exported to the application
and what actions the widget supports. This set of data is
referred to as the resources of the widget class. A widget
is always an instance of some class. A pushbutton is a good
example of a widget class that defines resources common
to all pushbuttons. This class (XmPushButton) defines the
methods for manipulating pushbuttons (e.g., resizing), and
the set of data that can be imported and exported from any
instance of the class. For example, the pushbutton class
defines a resource called armColor. This resource controls
the background color of the pushbutton when it is armed.
This color can be modified in an instance of the pushbutton
widget class by manipulating the state of the background
resource of the affected widget instance.

The pushbutton widget class also defines the actions that
pushbuttons support. Instances of the pushbutton class
have three distinct states: armed, activated, and disarmed.
By default a pushbutton is armed when the pointer is with-
in the pushbutton area and mouse button 1 is pressed. A
pushbutton is activated by first arming the pushbutton and
then releasing the mouse button while the pointer is within
the armed pushbutton area. After the mouse button is re-
leased, the pushbutton is disarmed. All of these behaviors
are defined as part of the pushbutton widget class defini-
tion.

Any widget class can inherit some or all of the resources
of another class. For example, the pushbutton class con-

JUNE 1990 HEWLETT-PACKARD JOURNAL 29

tains resources belonging to the XmLabel, XmPrimitive, and
Core classes, as well as its own resources. Fig. 3 shows the
relationships among the basic widget classes. Label and
pushbutton are primitive widgets. There are other primitive
widgets besides label and pushbutton but they are omitted
from Fig. 3 for clarity.

The basic widget class is the Core class. It contains re-
sources that are inherited by all other classes. Each lower
class can inherit some or all of the resources belonging to
a higher class. The resources belonging to a given widget
class can be determined by examining its man page in the
HP OSF/Motif Programmer’s Reference Manual.

A Widget Program

The following program illustrates the use of widgets in
a program. The program consists of a pushbutton widget
that is contained in a bulletin board widget. Selecting the
pushbutton causes a message to be displayed on the termi-
nal window and then the program terminates. The program
is called xmbutton.c and the output from the program is
shown in Fig. 4.

o file: xmbutton.c

*** project: Motif Widgets example programs

description: This program creates a PushButton widget.

o © Copyright 1989 by Open Software Foundation,
e Inc. All Rights Reserved.
i © Copyright 1989 by Hewlett-Packard Company.

>k *

/* include header files */

#include <X11/Intrinsic.h>
#include <Xm/Xm.h>
#include <Xm/BulletinB.h>
#include <Xm/PushB.h>

/* functions defined in this program */

void main();
void activateCB(); /* Callback for the PushButton */
/* global variables */

char *btn_text; /* button label pointer for compound string */
”
** main - main logic for xmbutton.c program
*/

void main (argc,argv)

unsigned int argc;

char **argv;

{

Widget toplevel; /* Shell widget */

30 HEWLETT-PACKARD JOURNAL JUNE 1990

Widget bboard; /*BulletinBoard widget y/
Widget button; /*PushButton widget */
Arg args[10]; /*arg list b
register intn; /*arg count */

/* initialize the Xt Intrinsics ~ */
toplevel = Xtlnitialize
(“main”, “XMbutton”, NULL, NULL, &argc, argv); .

/* Create a bulletin board widget in which the pushbutton widget */
/* can be placed */

n=0;

bboard = XmCreateBulletinBoard (toplevel, “bboard”,

args, n);
/* Manage the bulletin board widget */

XtManageChild (bboard);
/* Create a compound string for the button text */

btn_text = XmStringCreateLtoR

(“Push Here”, XmSTRING_DEFAULT_CHARSET);

/* setup arglist */
n=0;
XtSetArg (args[n], XmNIlabelType, XmSTRING); n++;
XtSetArg (args[n], XmNlabelString, btn_text); n++;
/* create button ¥/
button = XtCreateManagedWidget
(“button”, xmPushButtonWidgetClass,bboard, args, n);
/* add callback */
XtAddCallback (button, XmNactivateCallback, activateCB,
NULL);
/* realize widgets */
XtRealizeWidget (toplevel);
/* process events */
XtMainLoop (); ’
}
”
g/
void activateCB (w, client_data, call_data)
Widgetw; /* widgetid */
caddr_tclient_data; /* data from application !
caddr_tcall_data; /* data from widget class *}
{
/* print message, free compound string memory, and terminate
program */
printf (“PushButton selected.n”);
XtFree(btn_text);
exit (0);

activateCB - callback for button

}

There are nine steps in writing widget programs. These
steps are used regardless of the complexity of the program.
The nine steps are:

Include the required header files. "
Initialize the Xt intrinsics.

Add additional top-level windows, if needed.
Create argument lists for the widget.

Create the widget.

Add callback procedures.

Realize the widgets and loop.

Compile and link the program.

Create the defaults files.

@0 N o gv s b ol ks

- xmbutton al]

[e |

‘| v}

Fig. 4. Output from the program xmbutton.

Steps 4 through 6 are done for each widget included in
the program. The next nine sections relate these steps to
the program xmbutton.c.

Include Required Header Files

Some common variables and types of variables used by
the widgets are defined in header files. The necessary
header files are included at the beginning of the program.
These header files are:

#include <stdio.h>
#include &<X11/Intrinsic.h>
#include &<Xm/Xm.h>
#include &<Xm/widget>

Replace widget with the name of the corresponding widget
header file for each widget class used in the program. The
include files for all widgets are found in the directory /usr/in-
clude/Xm. The header file name for each widget can be found
in the synopsis section of each widget’s man page. The
order in which header files are placed is very important.
This order must be:
® General header files, such <stdio.h>
m Xt Intrinsics header files, such as <X11/Intrinsic.n>
® Widget header files, beginning with <Xm.h> and includ-

ing a header file for each widget class used in the pro-

gram. The order within the widget header files is not
critical.
For xmbutton.c, the include files are:

#include <X11/Intrinsic.h>
#include <Xm/Xm.h>
#include <Xm/BulletinB.h>
#include <Xm/PushB.h>

Note that there is an include file for the bulletin board
widget and one for the pushbutton widget.

Initialize the Xt Intrinsics

The Xt Intrinsics must be initialized before any other
calls are made to Xt Intrinsics functions. The most conve-
nient method of accomplishing this is to use the function
Xtinitialize. This function establishes the connection to the
X server, parses the command line that invoked the appli-
cation, loads the resource data base, and creates a shell

widget that will serve as the parent (or top level) widget
for the application widgets. The call to Xtinitialize in xmbutton.c
is:

toplevel = Xtinitialize (“main”, “XMbutton”, NULL, NULL, &argc,argv);

The first two parameters, “main” and “XMbutton”, are used
to reference defaults files, which are ASCII files used by
the system to set the values of widget resources. Defaults
files are explained in more detail later in this article. The
next two parameters are set to NULL since they are not used
in this example. The last two parameters, &argc and argy,
are the number of command-line parameters and the array
in which they are stored.

The syntax for Xtinitialize is:

Xtlnitialize (shell_name, app_class, options, num_options, argc, argv)

Type Parameter
String shell_name;
String app-class;
XrmOptionDescRec options[|;
Cardinal num_options;
Cardinal *argc;

String argv[];
where:

® shell_name specifies the name of the application shell
widget instance.

m app_class specifies the class name of this application.

m options specifies how to parse the command line for any
application-specific resources.

® num_options specifies the number of entries in the options
list.

® argc specifies a pointer to the number of command line
parameters.

m argv specifies the address of the command line parame-
ters.

Adding Additional Top-Level Windows

Xtlnitialize can be executed only once in any program, so
to create additional top-level widgets the functions
XtCreateApplicationShell or XtAppCreateShell must be used.
XtAppCreateShell allows the creation of a user-defined display
while XtCreateApplicationShell uses the default display.
XtCreateApplicationShell is from an earlier version of X, so it
is probably better to use XtAppCreateShell. Xmbutton.c does not
use a second top-level shell so neither of these functions
appears in the program.

Creating Argument Lists and Widgets

The next step in the program is to create widgets. In most
cases this involves setting widget resource name-value
pairs into an argument list and then calling a create function
for the widget. A name-value pair is a resource name and
the value assigned to that resource. For example, the re-
source name labelString might have a string value “ABCD”
assigned to it.

There are two methods to create widgets. The first
method involves using convenience functions, and the sec-
ond method involves using generic Xt Intrinsics. Conve-

JUNE 1990 HEWLETT-PACKARD JOURNAL 31

nience functions, which are part of the widget library, are
used to create a specific type of widget. For example,
XmCreateBulletinBoard creates an instance of a bulletin board
widget and XmCreatePushButton creates an instance of a
pushbutton widget. Widgets created with Xt Intrinsics are
automatically managed when they are created. However,
widgets created with a convenience function must be man-
aged with the function XtManageChild or XtManageChildren.
Managing widgets this way provides some flexibility and
saves time because a number of widgets can be created and
managed all at once.

Using Convenience Functions. In the program xmbutton.c,the
convenience function XmCreateBulletinBoard is used in the
following lines of code to create a bulletin board widget.

/* Create abulletin board widget in which the pushbutton */
/* widgetcan be placed gl
n=0;

bboard = XmCreateBulletinBoard(toplevel,
“bboard”, args,n);

r* Manage the bulletin board widget */
XtManageChild(bboard);

The variable n, which is used here to specify the number
of name-value pairs in the argument list, is zero, indicating
that there are no name-value pairs in the argument list.
The function XtManageChild is used to manage the bulletin
board widget bboard.

The syntax for XmCreateBulletinBoard is:

Widget = XmCreateBulletinBoard (parent, name, args, num_args)

Type Parameters
Widget parent;
String name;
Arglist args;
Cardinal num_args;

where:

= parent specifies the parent widget of the newly created
widget (toplevel in this example).

® name specifies the resource name for the created widget
(bboard in this example). This name is used for retrieving
resources and should not be the same as any other widget
that is a child of the same parent.

" args specifies the argument list for resource values.

" num_args specifies the number of arguments in args.
The syntax for XtManageChild is:

XtManageChild (child);

Type Parameter

widget child

where the parameter child specifies the widget to be man-
aged.

Using Xt Intrinsics. The pushbutton widget in xmbutton.c is
created using the Xt Intrinsic XtCreateManagedWidget. The
lines of code associated with creating the pushbutton
widget are as follows.

32 HEWLETT-PACKARD JOURNAL JUNE 1990

/* Create acompound string for the button text &
btn_text = XmStringCreateLtoR
(“Push Here”, XmSTRING_DEFAULT_CHARSET);
/* setuparglist */
n=0;
XSetArg(args[n], XmNIabelType, XmSTRING); n+ +;
XSetArg(args[n], XmNIabelString, btn_text); n+ +;
/* create button ki
button = XtCreateManagedWidget
(“button”, xmPushButtonWidgetClass, bboard, args,n);

The call to the widget library function XmStringCreate has
nothing to do with creating a widget, but it does set up a
compound string for the pushbutton label. A compound
string is designed to allow any text to be displayed without
having to resort to hard coding certain language dependent
attributes. The variable btn_text is a pointer for the com-
pound string ‘“Push Here.”

The Xt Intrinsic function XtSetArg is used to set up the
argument list. It sets the the values for specified widget
resources into an array that is subsequently accessed by
the widget when it is created. The syntax for XtSetArg is:

XtSetArg (arg, name, value)

Type Parameters
Arg arg;

String name;
XtArgVal value;
where:

arg specifies the name-value pair to be set.

name specifies the name of the resource.

value specifies whether the value of the resource will fit

in a long integer (XtArgVval is defined to be of type long int

in an Xt Intrinsics header file); otherwise, it specifies
the address.

The intrinsic XtCreateManagedWidget creates a pushbutton
widget that has the name button and the bulletin board
widget bboard as its parent. Note that creating a widget
merely creates the data structures associated with that
widget. It does not make the widget visible on the screen.

The syntax for XtCreateManagedWidget is:

Widget = XtCreateManagedWidget (name, widget_class, parent, args,

num_args)
Type Parameters
String name;
WidgetClass widget_class;
Widget parent;
ArgList args;
Cardinal num_args;

The parameters name, parent, args, and num_args specify
the same values as their counterparts in the convenience
function XmCreateBulletinBoard. The parameter widget_class,
which is of type WidgetClass, specifies the widget class
pointer for the created widget.

Adding Callback Procedures

Callbacks are procedures that are executed when certain
events occur within a widget. Events such as pressing a
mouse button, pressing a certain key on the keyboard, or
moving the cursor into or out of a window can trigger a
callback procedure. Every widget has a callback list for
each type of callback it supports. This list contains the
callback procedures to be executed when a particular event
occurs. For example, every widget supports an XtNdestroy-
Callback list. Each callback procedure in this list is executed
before the widget is destroyed. Information on the callbacks
supported by a given widget can be found in the man page
for that widget and any supporting superclass widget that
supplies resources to it. There are two steps involved in
adding a callback procedure: writing the callback proce-
dure and adding the callback procedure to the callback list.
Writing a Callback Procedure. A callback procedure re-
turns no value and has three arguments:

The widget for which the callback is applicable.

Data passed to the callback procedure by the application.

Data passed to the callback procedure by the widget.

In xmbutton.c, the callback procedure activateCB prints a
message to the standard output (this is normally the termi-
nal window from which the application was executed),
frees the memory used by the compound string stored in
the variable btn_text, and ends the program by executing the
system exit procedure. The callback procedure is just like
any routine or procedure except that it is called only when
the event to which it is tied occurs. In xmbutton.c, the activate-
CB callback procedure is executed when mouse button 1
is pressed and released and the mouse pointer is located
within the pushbutton window. It is the release of the
button (an event known as Btn1Up) that causes the pushbut-
ton to be activated and the callback procedure to be exe-
cuted.
Adding the Callback Procedure to the Callback List. The
callback procedure is added to a specific callback list that
is owned by the widget. This is done by using the Xt Intrin-
sics function XtAddCallback. In xmbutton.c the callback proce-
dure is added with the code segment:

/* add callback */
XtAddCallback (button, XmNactivateCallback, activateCB, NULL);

The syntax for XtAddCallback is:

XtAddCallback (w, callback_list, callback, client_data)

Type Parameters
widget w;

String callback_list;
XtCallbackProc callback;
caddr_t client_data;
where:

w specifies the name of the widget to which the callback
procedure is to be added.

callback_list specifies the callback list within the widget
to which the callback procedure is to be added.

callback specifies the name of the callback procedure to
be added.

s client_data specifies the client data to be passed to the
callback when it is executed.

Note that the callback is added after the widget has been
created with XtCreateManagedWidget. This is necessary be-
cause one of the parameters for XtAddCallback is the pushbut-
ton widget known as button. An error would occur if a
callback is added to a widget that does not exist.

Making the Widget Visible

Even though we have created a widget and added a
callback procedure to one of its callback lists, if we were
to compile and execute the program at this point, nothing
would be visible on the screen. This is because we have
not passed the essential information about our widgets to
the Xt Intrinsics functions that actually display the widgets
on the screen. This is accomplished by using the function
XtRealizeWidget.

The final step in the program is the call to the Xt Intrinsics
XtMainLoop. XtMainLoop is really an event loop. As events
occur, this function dispatches them and then searches or
waits for the next event to occur. In our simple example,
only the one event Btn1Up has any meaning. The window
shown in Fig. 4 will remain displayed indefinitely until
the pushbutton is pressed by moving the mouse pointer
into the button window and pressing and releasing mouse
button 1.

In the program xmbutton.c, displaying the widget and loop-
ing are performed in the code segment:

/* realize widgets */
XtRealizeWidget (toplevel);

/* process events */
XtMainLoop ();

Notice that there is no exit in the main part of the pro-
gram. Program termination is taken care of in the callback
procedure activateCB.

Compiling and Linking

For compiling and linking the program xmbutton, one of
the following command lines is used.

For HP 9000 Series 300 computers use:

cc -O -Wc, -Nd4000 -Wec, -Ns4000 -Wc, -Nt5000 -DSYSV -o\

xmbutton xmbutton.c -IXm -IXt -IX11

For HP 9000 Series 800 computers use:

cc -0 -DSYSV -0 xmbutton xmbutton.c -IXm -IXt -IX11

The libraries Xm, Xt, and X11, which are linked into the
program, must appear in the order shown. Xm is the widget
library, Xt is the intrinsics library, and X11 is the Xlib func-
tions.

Creating Defaults Files

In the example above, the values of certain widget re-
sources have been set by means of argument lists within
the program. Another method of setting resource values is
by means of ASCII files called defaults files. These files
are automatically read by the system before executing a
program. There are two types of defaults files: an app-default
file and a user-specific file called .Xdefaults.
App-Default File. This file is located in the directory /usr/lib/
X11/app-defaults and supplies defaults for an entire class of
applications. The class is specified in the call to Xtinitialize.

JUNE 1990 HEWLETT-PACKARD JOURNAL 33

For example, the call to Xtinitialize in xmbutton.c specifies the
application class XMbutton (by convention, application class
names are the program name with the first two letters
capitalized). The app-defaults file XMbutton contains resource
values for certain widgets that are used in the program
xmbutton.c. An example of such a file is shown below.

! XMbutton app-defaults file for Motif demo program xmbutton.c
! general appearance and behavior defaults

!

!

*fontList: hp8.8 x 16b
*shadowThickness 3

!

! BulletinBoard resources

!

*bboard.resizePolicy: RESIZE_NONE
*bboard.height: 150
*bboard.width: 250
*bboard.background: sky blue

!

! PushButton resources

!

*button.foreground: midnight blue
*button.background: goldenrod
*button.borderWidth: 0
*button.height: 30
*button.width: 100
*button.x: 75

*button.y: 60

Xtinitialize uses the data contained in XMbutton to build a
resource data base before the widget is actually created.

Xdefaults File. This file can be created in each user’s home
directory to set resource values for any number of programs.
Defaults found in this file override those in an app-default
file and allow different users to specify different values for
the same resources. For example, one user may prefer to
have different background and foreground colors from the
ones set in the app-default file. Note that the values in the
Xdefaults file only override the app-default values. They do
not change them. Suppose you want to override the default
background and foreground colors for both the bulletin
board widget and the pushbutton widget in xmbutton.c. The
Xdefaults file shown below changes the background of the
bulletin board to white, the background of the pushbutton
to red, and the foreground of the pushbutton to white. Note
that the colors are only changed for the program xmbutton.

xmbutton*button.foreground: ~ white
xmbutton*button.background: red
xmbutton*bboard.background: white

The colors can be changed so that the background and
foreground colors are the same for every widget in xmbutton

with this .Xdefaults file:

xmbutton.foreground: white
xmbutton.background: red

34 HEWLETT-PACKARD JOURNAL JUNE 1990

The order of precedence for setting values in widget re-
sources is:
® The app-defaults files
The .Xdefaults file
The values that are set in the program.

This means that values set in an app-default file can be
overridden by an .Xdefaults file and values set in an .Xdefaults
file can be overridden by values set in the program.

An Equivalent Xlib Program

A program using Xlib and Xt Intrinsics functions rather
than widgets to produce our pushbutton and bulletin board
combination would take nearly four pages of code. For this
reason, only a portion of the equivalent Xlib program is
presented here.

The previous section discussed defaults files as a means
of setting the value of a widget’s resources. If widgets are
not used then defaults files cannot be used. For example,
in xmbutton.c we used a single line in an .Xdefaults file to set
the background color of the pushbutton widget:

Button.background: goldenrod

Similar entries were made in the defaults files to set
values for other resources. Without widgets, setting up re-
source values requires several lines of code in the applica-
tion program. For example, to set the background color in
an Xlib program, the color must first be allocated and then
used as one of the arguments to the function XCreate-
SimpleWindow. The following code segment shows what this
involves:

#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <stdio.h>

#define OFF 0
#define ON 1

#define FALSE 0
#define TRUE 1

Display *dpy;

Window parent, child, root;

GC shadow_gc, text_gc;

unsigned long sky_blue, It_blue, goldenrod, wheat, dk_grey,
white, black;

intscreen;

XFontStruct *fptr;

Colormap cmap;

main(argc, argv)
intargc;
char *argv[];
{
XColor hard_def, exact_def;
XSizeHints xsh;
XEvent event;
intstate = OFF, tx, ty, status, pressed = FALSE;
/* Open the display */

if ((dpy = XOpenDisplay(NULL)) = = NULL) {

fprintf(stderr, “%s: Cannot open DISPLAYnN”, argv[0]);
exit(1);
}
/* Setparameter values */
screen = DefauItScreen(dpy);
root = RootWindow(dpy, screen);
cmap = DefaultColormap(dpy, screen);
white = WhitePixel(dpy,screen);
black = BlackPixel(dpy,screen);
/* Create graphics contexts */

text_gc = XCreateGC(dpy, root, 0, 0);
shadow_gc = XCreateGC(dpy, root, 0, 0);
/* Allocate colors */

status = XAIIocNamedColor(dpy, cmap, “SkyBlue”,

&hard_def, &exact_def); if (Istatus) {
fprintf(stderr, “%s: Cannot allocate the neccessary colorsn”,
argv[0]); exit(1);
}

else
sky_blue = hard_def.pixel:

status = XAllocNamedColor(dpy, cmap, “LightBlue”,
&hard_def, &exact_def); if (status) {

fprintf(stderr, “%s: Cannot allocate the neccessary colorsn”,
argv[0]); exit(1);
}

else

'—

It_blue = hard_def.pixel;
/*Load font*/
fptr = XLoadQueryFont(dpy, “hp8.8x16b”);
if(fotr = = NULL) {
fprintf(stderr, “%s: Cannot load the neccessary fontn”, argv[0]);
exit(1);
}
XSetFont(dpy,tengc,fptr—>fid);
/* Geometry calculations */
ty = (30—fptr—>ascent—fptr—>descent)/2 + fptr—>ascent;
tx = (100-XTextWidth(fptr, “Push Here”, 9))/2:

xsh.x = 0; xsh.width = 250;
xsh.y = 0;xsh.height = 150;
/* Create bulletin board equivalent */

parent = XCreateSimpIeWindow(dpy, root, xsh.x, xsh.x, xsh.width,
xsh.height, 2, It_blue, sky_blue);

Although there is more to this code than just allocating
colors, it is obvious that there is a lot more involved than
is required when using widgets.

References

1. K.H. Bronstein et al, “System Design for Compatibility of a
High-Performance Graphics Library and the X Window System,”
Hewlett-Packard Journal, Vol, 40,no. 6, December 1989, pp. 6-12.

JUNE 1990 HEWLETT-PACKARD JOURNAL 35

PR BRI e e

The HP SoftBench Environment: An
Architecture for a New Generation of
Software Tools .

The HP SoftBench product improves programmer
productivity by integrating software development tools into
a single unified environment, allowing the program
developer to concentrate on tasks rather than tools.

by Martin R. Cagan

HE HP SOFTBENCH PRODUCT is an integrated soft- 1 illustrates the HP SoftBench user interface.
T ware development environment designed to facili- This article describes the HP SoftBench tool integration
tate rapid, interactive program construction, test,and architecture. The HP SoftBench program editor, static
maintenance in a distributed computing environment. analyzer, program debugger, program builder, and mail are
The HP SoftBench environment provides an architecture described in the article on page 48. The HP Encapsulator
for integrating various CASE (computer-aided software en- is described in the article on page 59.

gineering) tools. Many of the tools most often needed—pro-

gram editor, static analyzer, program debugger, program Design Objectives

builder, and mail—are included in the HP SoftBench prod- The overall goal of the HP SoftBench product is to im-

uct. Another HP SoftBench component, the HP Encap- prove the productivity of programmers doing software de-

sulator, makes it possible to integrate other existing tools ~ velopment, testing, and maintenance. To achieve this goal,

into the HP SoftBench environment and to tailor the envi- the following objectives were defined for the tool integra- ‘
ronment to a specific software development process. Fig. tion architecture:

(continued on page 38)

o SoftBench — Program Debugger =10

File Breakpoints Execution Trace Show Help

Context: hpfcmrc:/users/ca gan/Project Tower/tower

PC: main File: main.c Line: 35 Depth: 8

) toplev:l: T

-—Il SoftBench — Static Analyzer !u t]
File: hpfcmrc:/users/cagan/?roject/Tower/m
File Edit Buffer [Show| History Settings Help
main(arge, argv)
int arge; Context: hpfcmre:/ References () File Set: Open
har * ; < .
. cha argv[]; O:[toprevel Declarations () [Scoping
Widget m bboard, audio_3 | Query: References Definition () ping Used: None v
PC int n = 8;
a a uses () rd, audio_toggl 2
pin[1].ring count = COUNT; main.c (49), mai Modifications () ze(argv[8], "Te
® pin[2].ring count = 8; main.c (58), mai - plevel);
pin[3].ring count = B8; main.c (53), mai Functions - |etinBoard(tople
in. 7 i 1)
X . main.c (76), mai Classification () vel)
pin[1].location = PIN1_X;
e —————————— Glohal Variablen
Pattern Match
e e e .
|
Added:
1: count: 1 Active main: 38: pin[=
Starting process 29299: "Tower/tower" hpfcmrc:/users/cagan/Project/Tower/main.c ReadOnly
main.c: main: 35: int n = 8; Al
= main(argc, argv)
T int argc; 4
Y — — !!¥!!% char *argv[];
{
User Program 1/0 widget [EYFUSEN, bboard, audio_toggle, start; ‘
int n = 0;

pin[1].ring count = COUNT;
pin[2].ring count = 0;
pin[3].ring count = 8;

Fig.1. Typical HP SoftBench user
interface.

hpfcmrd

36 HEWLETT-PACKARD JOURNAL JUNE 1990

The importance of software testing does not have to be argued
anymore.’ There also exists a relative wealth of sources describ-
ing various aspects of software testing. Unfortunately, most of
the published literature concentrates on elegant approaches to
limited subproblems derived from traditional software (that is,
batch-oriented input/output). Additionally, the published body of
knowledge almost completely ignores the issue of how the testing
activity should fit modern project life cycles (reference 2 is a rare
exception).

This section is about testing a large software system: the HP
SoftBench product described in the accompanying article. The
goal is to describe both the process and the various tools and
utilities developed to exploit the architectural advances of the
HP SoftBench product to support the testing process.

The problem of testing a system such as the HP SoftBench
environment is difficult and therefore interesting. The problem
has the following major attributes:
= Development of the HP SoftBench system followed the spiral

life cycle® which, because of its crucial aspect of rapid pro-

totyping, presents a real challenge for formal testing.

= The formal testing activity started early in the project life cycle
and closely tracked the project development.

® The system being tested consists of several tightly integrated
tools and is event-driven.

® The system has a sophisticated user interface (window-based
and mouse-driven).

® Black-box tests had to be automated (which in the case of
the user interface meant developing an “automatic user”).

® The testing proceeded along an unorthodox path—from black-
box testing, through “grey-box testing” (driven by branch flow
and complexity analysis), to white-box testing.

Automatic Regression Testing

Traditional testing methods focus on exercising and testing
programs by stimulating them using controlled inputs and ob-
serving their outputs. If the input and output sets are “well-be-
haved” (e.g., numeric values) then it may be possible to prune
the test space using the techniques of equivalence partitioning
or boundary analysis.*

The HP SoftBench product presents a special challenge. Its
user interface is almost completely mouse-driven and makes
heavy use of hierarchically arranged windows. The system inte-
grates actions of several tools through a message interface. The
output is mostly visual. Finally, the system can runin a distributed
environment on many processing units and varying displays.

Automatic testing of such a system implies the need for a
“robot tester,” blindfolded and handcuffed but capable of enter-
ing input and verifying output. One possibility is to operate at
the pixel level and generate required actions (pushing buttons,
etc.) at specific points on a screen. The verification of output
would then require taking screen snapshots and comparing them
with the expected screens. The problem is that this approach is
tied directly to the screen’s appearance. A mere change in fonts
or other screen attribute (e.g., color scheme) would completely
invalidate this testing approach. A higher-level approach is
needed.

An HP SoftBench tool has two major interfaces: the user inter-
face (mouse/keyboard/window) and the message interface. We
used both interfaces to exercise and verify HP SoftBench be-
havior. To deal with the user interface challenge, we used two
mechanisms that allowed us to stimulate inputs and register out-

Architectural Support for Automated Testing

puts independently of screen parameters. On the input side we
identified inputs (buttons to be pushed or editing windows) not
by their screen coordinates but by symbolic names associated
with these objects. Thus, the automatic testing tools are able to
find some window9 no matter where that window is placed on the
screen (or even if it is completely obstructed by other windows).
To obtain higher-level verification of outputs without resorting to
pixel-level screen dumps, we instrumented the code so that any
window could be probed and forced to dump its contents (strings
or a pointer position in the case of the edit widget, or a label in
the case of a button). This approach allows selective probing of
software objects (very much like having testing probes in
hardware).

Testing Tools

Two companion testing tools were used to drive both HP
SoftBench interfaces—user and message. Tool A allows the tester
to send messages to the message server. It can intercept mes-
sages and match them against a list of expected messages.
Tool A can also act on widgets. Tool A’s companion utility, tool
B, is capable of automatically and interactively creating a test
file that mixes message and widget operations. This file becomes
the input to tool A.

Tool A allows the user to send messages to the message
server. Tool A will then wait for the tools to respond to the mes-
sages. The order in which the messages are sent and received
is restricted by a partial order relation given by the user. This
ordering can be totally unrestricted, strictly sequential, or any-
thing in between.

Tool A maintains an active list of commands as it runs a test.
As each command is executed it is removed from the active list
and all of its successors are checked to see if they should be
added to the active list. A command is not added to the active
list until all of its predecessors have been executed.

Actions and Software Probes

Tool B can be used to log two types of events. It can intercept
messages and it can also log operations on widgets into a test
file. All of the widget-based commands search X11's window
tree for the named widget at the time the command is executed.
The search is done at this time because windows are constantly
being created, destroyed, and moved about within the tree. The
search algorithm does a breadth-first search of the window tree
for the first name of the widget. As each match is encountered
a second breadth-first search is started on the subtree of the
matched window, looking for the second name of the widget.
These searches continue until the tree is exhausted or all of the
names of the widget are found. The search algorithm remembers
that it has touched a particular application, and as a result all
the subsequent widget searches use that shortcut (resulting in
about a 90% speed-up in the search time).

When capturing tests with tool B, the tester can identify a
widget that needs to be probed at the test time. The information
dumped for a widget includes all text seen on the display, whether
the text is sensitive (grayed out), and whether it is set or marked
(only for menu buttons and toggles). This scheme allows us not
only to describe the events to execute the actions, but also to
specify what needs to be checked to verify that the actions hap-
pened correctly.

(continued on next page)

JUNE 1990 HEWLETT-PACKARD JOURNAL 37

Supporting Utilities

Our tests were stored in the HP-UX revision control system
(res) and ran in the proprietary HP Scaffold testing harness.® We
used branch flow analysis (BFA) to monitor the coverage of the
code and to steer the testing activities.® We combined the BFA
information (annotated source code) and the results of the com-
plexity analysis (McCabe's ACT?) to focus on testing the areas
of the code that have high complexity and low BFA coverage
(grey-box testing).

® Support integrated tool sets. The tools should cooperate
to present a task-oriented environment that lets users
concentrate on what they want to do, not how to do it.

® Support interchangeable tools. HP’s CASE strategy is
based on the belief that there is no single solution appro-
priate for all users. The type of application being de-
veloped, the size of the team, the delivery constraints,
and the development methodology all impact the opti-
mal tool set. The integration architecture should permit
any tool to be replaced such that no changes need to be
made to the other tools and the new tools cooperate with
the other tools in the environment at least as well as the
original tools do.

® Support a distributed computing environment. The ar-
chitecture needs to support software development in a
distributed computing environment composed of combi-
nations of X terminals, workstations, midrange comput-
ers, and servers, possibly in geographically dispersed
locations. Tool execution, data, and display should all
be designed for a network environment.

® Leverage existing tools. Users need to be able to integrate
tools they already use, which they have either purchased
or developed, into their software development environ-
ment. To do so, they should not have to modify the
source code of any tool or change the other tools in the
environment.

® Support software development teams. The tools and ar-
chitecture should support team coordination and the
management of project files in a distributed development
environment.

® Support multiple work styles. The HP SoftBench product
should not dictate a single style of work. The style should
be based on the task. For example, if the user is primarily
doing maintenance the environment should be centered
around the maintenance task, and if the user is primarily
doing rapid prototyping, the environment should be cen-
tered around the program construction task.

® Support other life cycle tools. The HP SoftBench ar-
chitecture should facilitate the integration of additional
life cycle tools such as project management, documenta-
tion, analysis, and design tools.

® Build on standards. The HP SoftBench architecture
should build on the UNIX* operating system, NFS and

UNIX is a registered trademark of AT&T in the U.S.A. and other countries.

38 HEWLETT-PACKARD JOURNAL JUNE 1990

References

1. B.W. Boehm and P.N. Papaccio, “Understanding and Controlling Software Costs,"
IEEE Transactions on Software Engineering, 1988

2. R.A. Sulack, R.J. Lindner, and D.N. Dietz, “A new development rhythm for AS/400
software,” IBM Systems Journal, no. 3, 1989.

3. B.W. Boehm, “A Spiral Model of Software Development and Enhancement,” IEEE
Computer, no. 5, 1988.

4. G.J. Myers, The Art of Software Testing, John Wiley & Sons, 1979.

5. C.D. Fuget and B.J. Scott, “Tools for Automating Software Test Package Execution,”
Hewlett-Packard Journal, Vol. 37, no. 3, March 1986, pp. 24-28.

6. D. Herington, et al, “Software Verification Using Branch Analysis,” Hewlett-Packard
Journal, Vol. 38, no. 6, June 1987, pp. 13-22

7. T. McCabe, “A Complexity Measure,” IEEE Transactions on Software Engineering,
Vol. SE-2, no. 4, December 1976

Jack Walicki
Software Development Engineer
Software Engineering Systems Division

ARPA networking, the X Window System™ Version 11,
and the OSF/Motif appearance and behavior.

Architecture Overview

We define a software engineering environment to be an
ensemble of tools that collaborate to support the user’s
software engineering process.' There are several types of
tool integration. The HP SoftBench tool integration ar-
chitecture concentrates on providing mechanisms that sup-
port tool collaboration in a distributed computing environ-
ment. This type of integration is often called control inte-
gration or process integration.

The architectural facilities provided by the HP SoftBench
product are complementary to those in other integration
architectures that concentrate on providing services for
sharing data between tools and managing data relation-
ships.?3*

Over the last several years, university and industrial re-
search laboratories have been addressing the issues of im-
proved software tool integration facilities.?®®” The HP
SoftBench tool integration services are an implementation
of much of this research in a commercial product. There
are three primary components in the HP SoftBench tool
integration architecture:

Tool communication
® Distributed support
® User interface management.

ool Communication

HP SoftBench tools communicate in a networked envi-
ronment via a broadcast communication facility designed
to support close communication of independent tools.

In the UNIX operating system, tool communication is
typically limited to single-direction, point-to-point data
streams (pipes). In the HP SoftBench environment, tool
communication is two-way, one-to-many or many-to-one,
and event-driven.

Message-Based Application Program Interface
All HP SoftBench tools, as well as nonSoftBench tools
that have been properly integrated using the HP Encap-

X Window System is a trademark of the Massachusetts Institute of Technology

HP SoftBench tools communicate by sending messages, which
are dispatched by the broadcast message server (BMS) to
appropriate other tools. HP SoftBench messages have the follow-
ing structure:

Originator Request-id Message-Type Command-Class
Command-Name Context [Arguments]

Originator. The originator is the tool that sent the message. How-
ever, by convention, this field is not used by the HP SoftBench
tools themselves because they do not send messages to a par-
ticular tool; they send them to the BMS so that other tools in-
terested in the events can be notified.

Request-id. The request ID is constructed from the triple (message-
number, process-id, host). This network-wide unique ID is used so
that responses can be associated with their original requests. In
other words, a notification sent as the result of a request has the
same request ID as the original request to which itis responding.
Message-Type. The defined message types are:

R = Requestmessage
N = Success notification
F = Failure notification.

sulator, provide access to their functionality through a mes-
sage-based application program interface (API). Any action
that can be initiated through the tool’s user interface can
also be initiated through the message interface.

When an HP SoftBench tool or an encapsulated tool
wants to cause another tool to perform an operation, it
sends a request message. The tool requesting the service
does not know the particulars of the tool that will service
the request. It only deals in terms of an abstract tool pro-
tocol. There are several predefined tool protocols in the
HP SoftBench environment, one for each class of tool (e.g.,
DEBUG, EDIT, BUILD). Each tool protocol is composed of a
set of operations (e.g., STEP, SET-BREAKPOINT, CONTINUE).
As long as a new tool fully supports the appropriate tool
protocol, that new tool can be substituted for the original
tool, and the other tools in the environment continue to
operate with the new tool just as they did with the original
tool. With the HP Encapsulator, users can define new tool
protocols or develop new tools for existing protocols.

There are several important benefits of having a message-
based interface to all tools in the environment, but the
primary reason is for task automation. Tools can be con-
trolled by other tools instead of a person.

Other benefits of a message-based interface include pro-
grammatic application testing (see ““Architectural Support
for Automated Testing,” page 37), computer-based training,
and on-line help (see “Integrated Help,” page 57). The value
of a message-based API has been demonstrated in several
systems. Most influential in the HP SoftBench design were
the FIELD system done at Brown University,® the FSD sys-
tem done at USC-ISI,> and the HP NewWave environ-
ment.*?

Broadcz;st Messaée gerver Message Structure

Command-Class. The command class is the type of operation (e.g.,
EDIT, DEBUG).

Command-Name. The command name is the name of the operation
within the command class (e.g., SAVE-FILE, STEP, STOP). The
combination of the command class with the command name l
defines aunique operation, (e.g., EDIT SAVE-FILE or DEBUG STEP).
Context. The context is the triple (host, base directory, file). This
indicates the location of the data being operated on. The context
is used to distinguish between multiple instances of the same |
tool. For example, if the user is working on two projects at once |
and has two debuggers running, the context ensures that the |
right messages get sent to the right debugger.
Arguments. Each message may have optional, variable-format |
argument lists, which provide additional information regarding
the operation—for example, the name of a function or variable.

In the HP SoftBench product, complex data is passed by refer-
ence rather than by value. For example, if the message is a
notification from the static analysis tool with the response to a |
request for a complex query, the arguments contain a pointer to
a file containing the data.

Event Triggers

An important extension to the message-based API model
is that all HP SoftBench tools and all external tools that
have been integrated using the HP Encapsulator announce
the action they just took after each operation they perform.
This notification message is sent whether the operation
was initiated from the user interface or from the message
interface. The notification message also indicates whether
the operation was successful (see “Broadcast Message
Server Message Structure,” above).

These notifications are the key to a powerful HP
SoftBench concept known as event triggers. A trigger is a
set of operations to be executed when an event occurs
somewhere in the user’s software engineering environ-
ment. As a simple example, when an HP SoftBench tool
modifies a file, it announces this fact, so that other tools
that are operating on the file can be updated appropriately.
The notion of a tool announcing its operations comes from
the research on FIELD at Brown University.®

In the HP SoftBench environment, certain triggers are
predefined in the tools. More important, users can define
their own triggers with the HP Encapsulator, keying off
any notification in the user’s environment. For example,
the user might define an event trigger that automatically
notifies the team whenever a successful build occurs, or
metrics might be collected whenever a file is checked into
version control.

Broadcast Communication

The HP SoftBench environment uses a broadcast model
of tool communication provided by the facility known as
the broadcast message server (BMS). The BMS is the dis-
patcher of messages between the various tools in the user’s

JUNE 1990 HEWLETT-PACKARD JOURNAL 39

The distributed computing support capabilities of the HP
SoftBench environment can support a variety of machine config-
urations. Fig. 1 shows an example of a configuration. Assume
that an engineer has a small, inexpensive X display machine
(possibly a diskless HP 9000 Model 340 workstation or an X
terminal). Also assume that the HP SoftBench environment is
installed on an HP 9000 Model 370 server machine, and that the
| engineer is developing software for an HP 9000 Series 800
machine, which is used as a central data storage facility. A typical
HP SoftBench configuration will probably have one or two
machines instead of the three in this example. However, it is
possible to come up with configurations that use more machines.

In this example, first the engineer would start the HP SoftBench
environment on the Model 370 HP SoftBench server, with the
DISPLAY environment variable pointing to the X display server.
One of the features of the HP SoftBench distributed execution
facility is that the current environment of a process is always
maintained when executing a child process, even over a network
connection. Thus, if any X clients are spawned, the child X client
will point to the correct display machine. Next, the engineer starts
the HP SoftBench build tool, with the context set to the Series
800 machine. Finally, the engineer selects the build tool’s build
button. The HP SoftBench subprocess control (SPC) facility will
now do two things. It will set the working directory to match the
context host and directory, and it will spawn a make process on
the Series 800 machine in this working directory. Alternatively,
the build tool can be configured to spawn the make process on
a different, possibly less loaded machine, but the working direc-
tory will still point to the same context directory.

What if a bug is discovered in this program? The engineer can
start the program debugger on the Model 370 HP SoftBench
server. This can be accomplished using the Actions:Debug menu
pick of the development manager or the Tool:Start... menu pick
of the tool manager, or by starting the HP SoftBench program
debugger manually. The debugger again uses the distributed
executign feature of the SPC to start an xdb process on the Series
800 machine, debugging the object files created by the build
tool. Finally, the engineer can start the static analyzer to browse
through the static analysis information generated by the build
tool. The static analyzer is running on the Model 370 HP
SoftBench server and accessing data on the Series 800 data
server.

|

software engineering environment. Like a communications
satellite, the BMS receives messages from tools in the en-
vironment and rebroadcasts these messages to all tools that
have expressed an interest in each type of signal.

When an HP SoftBench tool or a tool integrated using
the HP Encapsulator starts up, it establishes a connection
to the BMS and announces its command class (that is, the
tool protocol it supports) and the operations it will service
(its message-based API). It also tells the BMS what events
it would like to be notified about if and when they happen
elsewhere in the environment (that is, the messages for
which it wants to define event triggers). See ‘‘Broadcast
Message Server Message Structure,” page 39.

There are two types of messages in the HP SoftBench
environment: notifications and requests. A notification is
an announcement of an action, and a request is a tool asking
the environment to perform an action.

40 HEWLETT-PACKARD JOURNAL JUNE 1990

'Distributed Execﬁti”on; Datréi', and ljis»lrll‘a>y o

Source Files [-
Object Files | = 51 |
Executables || ||

| Project ‘ i

|_ Files | |
W |4
1l YA |
FAE—
/}A/ X ;
/'J / ‘)i Static Analysis
xdb Q./’.,”M“J. cee A-u..;'}»l.77 Debug |

///, Build 5

/ HP 9000 Model 370 | i
SoftBench Server

.

X Server |

/ HP 9000 Series 800
/ Data Server

HP 9000 Model 340
Display Server

—P X Display Connection |
— —§» Data Connection |
«sesp SPC (Subprocess Control) Connection

Fig. 1. An example of an HP SoftBench distributed develop-
ment environment.

Gerald P. Duggan |

Software Development Engineer |
Software Engineering Systems Division |

When a notification message is received by the BMS, it
forwards the message to the tools that have informed the
BMS that they would like to receive those messages. For
example, in Fig. 2, the program builder tool has sent a
notification that a DIRECTORY_BUILD was successfully com-
pleted. The BMS forwards the message to tools that have

Fig. 2. HP SoftBench tools communicate through the broad-
cast message server. Tools receive only messages they want
to receive.

In the HP SoftBench environment, we wanted to distinguish
regions according to the following functions:
= Unchanging system information: e.g., prompt strings
= Changing system information: e.g., the function being exe-

cuted in the debugger
= User area: anywhere the user can enter text
= Read-only user area: a view of a read-only file
® Selectable regions: buttons.

The X11 window toolkit allows a choice of fonts, colors, and
shadows for each region of an application main window. With
the OSF/Motif appearance, regions can also be distinguished
by 3D appearance. Areas can appear to be raised, lowered, or
flat on the window panel. These collections of visual attributes
organized by function are called schemes.

Information presented by the system, such as the current line
number in the HP SoftBench program debugger, appears flat in
the window. The label for system information uses a bolder font
than the value. In the main window for a tool, there is a single
background color for all system areas.

Areas where the user can enter information appear recessed
in the window and have a different background color from system
areas. Sometimes the user is prevented from entering information
in a user area—for example, when a file being viewed has read-
only protection. In these read-only user areas the background
color is the same as the system areas.

Regions where the user can select using the mouse (buttons,
for instance) use a large bold font and appear raised.

Windows that pop up (both menus and dialog boxes) use
colors that associate them with the pull-down menu bars.

Much of the human interface is implemented in HP SoftBench
library routines shared by all applications. These high-level calls
create widgets of known names. As a result, human interface
consistency is ensured and the number of resources needed to
specify a scheme is minimized. Widget classes are used where

expressed an interest in this event. In this case, the develop-
ment manager will use the message to trigger a directory
update and the static analyzer will use it to trigger a
reanalysis of its program data base.

Often, no tools have expressed interest in a given mes-
sage. When this is the case, the message is discarded. Tools
get only messages they have requested. This serves to
simplify a tool’s message processing and substantially re-
duce the message traffic on the network.*

Tool Execution

When a request message is received by the BMS, the HP
SoftBench environment first checks to determine whether
an already running tool has indicated through its API that
it will service this type of request. If there is such a tool
running, the HP SoftBench environment forwards the re-
quest message to that tool.** If there is no such tool run-
ning, the HP SoftBench environment checks a user-cus-

* Strictly speaking, “broadcast” message server is somewhat of a misnomer, since only
tools that have explicitly requested certain messages are forwarded those messages. The
term “multicast” would be more accurate.

**This explanation has been somewhat simplified. An important factor in message dispatch-
ing is the context of the message. All messages contain a triple that indicates the location
of the data the message is referring to. The HP SoftBench environment uses this to dis-
tinguish between multiple instances of tools.

Schemes: Interface Consistency

possible to distinguish scheme components, but where a single
widget class is used for more than one purpose, widget names
or widget class hierarchies must be used.

Choosing a Scheme

Schemes for monochrome and color are provided in three
different font sizes. If the user does not specify a particular
scheme by setting the Scheme resource, a scheme will be chosen
based on screen resolution, visual class, and screen depth. Font
size is chosen based on the screen resolution. A color scheme
will be used only if the screen has at least four color planes and
the desired colors are available.

Implementation

Scheme files are ordinary X11 resource files. X11 resources
are used to configure tools. Each application constructs a re-
source data base for itself. Some resources apply to all instanti-
ations of a tool—for example, the arrangement of windows in an
application. Others, the scheme resources, may depend on the
particular display being used. Users can override resource val-
ues.

HP SoftBench tools have resource files not used by other X11
applications. This was done to permit the sharing of resources
between applications. Resources for code implemented in
shared libraries are stored in the LibXe resource file. Scheme
resources are placed in their own file. This approach allows easy
configuration with all font and color specifications isolated and
shared.

John R. Diamant

Colin Gerety

Software Development Engineers
Software Engineering Systems Division

tomizable data base that contains the name of the appro-
priate tool to start and instructions for starting it. The HP
SoftBench environment then starts the tool and waits for
confirmation from the tool that it will indeed handle the
request. Once this confirmation is received, the HP
SoftBench environment forwards the queued request mes-
sage to the tool just started. The HP SoftBench module that
monitors the tools that are currently executing and invokes
tools when necessary is referred to as the execution man-
ager.

In the HP SoftBench environment, as in the HP NewWave
environment, but unlike the UNIX operating system, users
do not have to start tools explicitly. They request actions
on objects, and if a tool needs to be started, the execution
manager starts it for them correctly and automatically.

Distributed Support

It is a fundamental goal of the HP SoftBench environment
to support development in a distributed computing envi-
ronment. This is defined to include configurations of sev-
eral hundred computers, composed of arbitrary combina-
tions of X terminals, workstations, servers, and larger com-
puters. The goal of HP SoftBench distributed computing

JUNE 1990 HEWLETT-PACKARD JOURNAL 41

prompt the user for input, and many provide views into source
files. For consistency of the human interface, it is an HP SoftBench
| requirement that a common set of editing commands be used
| in all editable areas. The editing functionality exists in the HP
SoftBench library and is shared by all the tools. Because the
! code is shared by all applications, consistency of appearance

|
|
? All HP SoftBench tools have common editing needs. All must
i
|
[

and behavior is ensured.

The Edit Widget

All of the underlying functionality needed by the editor was
put into the edit widget. This includes insertion and deletion of
text, cut, copy and paste, language dependent selection such
as tokens or statements, and undo history. The edit widget sup-
ports 16-bit characters and has language-sensitive editing capa-
bilities. The availability of the widget makes it inexpensive to
have this exact functionality in numerous places throughout an
application. In fact, this single copy of code is shared among all
the HP SoftBench applications. An edit widget is used in all areas
where a user can type information.

A variant of the edit widget is used to provide selection from
alist of alternatives, such as a list of filenames in the development
manager directory list, function names resulting from a query in
| the static analyzer, or a list of mail messages in the HP SoftBench
| mail subsystem.
|

One-Line Editables
[The human interface needed to include many areas for display-

ing small user input windows that could be labeled with concise
| prompts, such as for a filename, an execution hostname, or a
| search string. These are implemented with a packaged combina-
| tion of a static text widget for the prompt and an edit widget for
the user data. Called a one-line editable, this type of entity pro-
vides the application writer with a single widget to specify
geometry placement. The individual constituent widgets allow
specification of different fonts and background colors to inform
the user which areas are constant and which are modifiable.
Using such an editable gives the application all the power pro-
vided by the editor in each input field, with no additional code.
One-line editables are used in dialog boxes as well as in the
application’s main window.

View Space
Applications often need one or more windows to display a
view into a possibly large piece of text, such as the contents of

support is to facilitate the use of the network and to hide
from the user any complexities the network introduces.

Remote Execution

In the HP SoftBench environment, any tool can execute
on any host in the network.* To support this remote execu-
tion, HP SoftBench includes a distributed execution mech-
anism designed to make the remote execution transparent
to the HP SoftBench tools.

To communicate with processes running on a local or
remote computer, a high-level protocol is used. When com-
municating with a remote computer, a small daemon pro-
gram known as the HP SoftBench subprocess control (SPC)

* On each computer where any HP SoftBench tool or encapsulated tool will execute, the
HP SoftBench product must be installed.

42 HEWLETT-PACKARD JOURNAL JUNE 1990

| - Pervasive Ediﬁng in the HP SoftBench Environment

a file or a set of debugger output messages. Each such screen
area is associated with a view space. A view space provides a
scrollable area for an edit widget, a place for a title, a filename,
and a collection of indicators or buttons.

The size of the view space is driven by the size of the edit
widget, which can be specified in character rows and columns
instead of pixels. The modifiability of the region is indicated by
the background color. The application can choose to hide the
indicators selectively. Buttons not prohibited by the application
automatically appear as needed.

If several files or buffers share the same view space, an index
button appears. This allows the user to select from a list which
of the views in that space should be displayed.

Viewing Files
To insert a file into a view space, the application makes a call
such as:

DisplayFile(ViewSpace, DataHost, DataDirectory, DataFile, LineNumber);

Access to a host other than the execution host is provided
transparently to the application.

A similar interface allows the application writer to add annota-
tions to a given line of a file. These annotations are displayed
as small pictures in a window adjacent to the edit widget. These
pictures ride with their associated line as the file is edited or
scrolled. Annotations are used, for example, to denote debugger
breakpoints or the program counter position.

File Synchronization

Since several applications may be viewing the same file, the
file-viewing library routines provide for keeping these views syn-
chronized with the file system, using the broadcast message
server (BMS). When the edit widget successfully saves a file, a
FILE-MODIFIED message is sent, alerting other applications in-
terested in the file. By default, the other applications automatically
load the new file from disk. If there is risk of destroying a user’s
modifications, or if the user has so requested, a prompt box
appears asking whether or not to reload the file.

William A. Kwinn
Software Development Engineer
Software Engineering Systems Division

|

daemon is used. This remote daemon is automatically in-
voked through the HP-UX inetd facility. Process control be-
tween the initiating tool and the remote process is then
conducted through the SPC daemon.

HP SoftBench tools communicate in a distributed envi-
ronment via the BMS, as described earlier. This communi-
cation mechanism is network-based so that tool communi-
cation works identically whether all tools are local or each
is on a different computer in the network.

One of the most powerful applications of distributed
execution is for special-purpose execution servers. For
example, a project of ten software developers might wish
to designate a dedicated (or otherwise lightly loaded) com-
puter on the network to be used for all program builds
(compiling and linking). With the HP SoftBench distributed

(continued on page 44)

Native Languagé Suppdrt

Localizability has been one of the goals for the HP SoftBench
product from the beginning. To this end, all of the code has been
written to handle both 8-bit and 16-bit data (see Fig. 1). The only
limitations are imposed by some of the underlying HP-UX tools,
such as res and mkmf. The HP SoftBench edit widget can receive
16-bit input from the native language 1/O facilities (see below).
The fonts designed for the HP SoftBench environment include
all of the HP Roman8 characters.

The HP SoftBench environment uses the configurability of X11
applications to full advantage. Instead of putting localizable
strings in message catalogs, we have opted to put them in X11
resources. Localizers can redefine the values of X11 resources
to translate HP SoftBench pull-down menus, button labels,
prompts, and error messages. Because we have made maximal
use of widgets that autoscale in size, there should be few places
where localizers need to adjust screen layout parameters. By
setting a single resource value, localizers can change editing
commands from chorded combinations with the Extend char key
to sequence combinations with the ESC key. They can also use
X11 resources to specify appropriate font schemes, and even
to refer to alternate icon bit maps.

In response to a request from the HP SoftBench developers,
the X11 team added support for an environment variable that
causes the system to search for application defaults in a specified
directory, rather than in /usr/lib/X11/app-defaults. This allows the un-
localized version and one or more localized versions of the HP
SoftBench environment to reside on the same system.

By setting a few environment variables and adding at most
several lines to .Xdefaults, the user can use a localized HP
SoftBench environment with virtually no speed penalty.

SoftBench - 5L XI5 4 b—

7740 $RE Nyl FEE 77047 »"»"" su2l

Edit Widget

The HP SoftBench edit widget is the core of all 8-bit and 16-bit
data handling in HP SoftBench applications. The user’s textual
data, either in the form of files loaded from the file system or text
entered into editable fields, is stored and presented to the user
through the edit widget. This use of the edit widget makes it
much easier for each tool to provide data integrity.

Native language I/0O support is part of the consistent editing
facilities described in “Pervasive Editing in the HP SoftBench
Environment” on page 42. Wherever the user can enter text within
HP SoftBench tools, native language 1/O is available. Because
it is provided by the edit widget, it is transparent to individual
tool implementors.

The edit widget is built on the R2 version of the XtIntrinsics.
At application start-up, it determines from the HP-UX environment
variable, LANG, whether it needs to handle 8-bit or 16-bit data
and makes appropriately configured buffer structures. It also
checks whether an Asian language keyboard is attached to the
X server. If the keyboard is Asian or if an environment variable,
KBD_LANG, is set to an Asian language, the widget will activate
a native language I/O server process. In the final product version
built on the HP-UX 7.0 release, the HP X extension library provides
much of the support necessary to handle all of HP’s supported
keyboards correctly.

The design of the edit widget is based on object-oriented
principles. Since a supported object-oriented language was not
available on the HP-UX operating system at the start of develop-
ment, we used a set of C macros to code in a simple but effective
object-oriented style. The 8-bit and 16-bit capabilities are pro-
vided by specialized subclasses of base objects, which provide

SoftBench - Fr 3L LF 4 b—

771k: hpfewig: /usr/softbench/sr 1% [GRE] N7y FEE 77050 b2 AT

PRSP E T

/src/snapshot.c

for (i = 0; i < arge; i++)

8 ®/EQ°-)
Hincl .
#incll ARDAHI(\-zH)
#incl 7R

#inc] Y
#inc]) Z
displayName = argv[i] A iy
for (j =1; j <arge g::z} V7 (17

argvljl = argv[j + 8%

I ELO F4 2 L—0D
i{f (strehr (argulil, ':’

break; Ix A4y

/s RERI F4 ATV —
i(f ((display = XOpenDisplay

main (arge, argv)
int argc;

h *x s
forintf(stderr, "Z® s ehar angy
exit (0); int i, §:

/% XDefaults @ ¥'—% % 7
ProcessXDefaults (argv[0]);

I AYTybI4Y & Fn

ProcessCommandLine (arge, a

for (i = 0; i <arge; i++)

displayName = argv[il;

argvlj] = argulj + 1];

/x ¥4 ALV —DZRT A argy MoRDEH */

/2 ELW ¥4 27 L —DZRT AREh T, TOZRET A RD
i{f (strehr (argvlil, *:’) != NULL)

for (3= i; j <arge - 1; j*+*)

arge--; JEEEER SRR RAR XA X R R R KRR KA KRR AR R R KKK AR LR R KRR XX RN RN RN k%]

+/

) T Krv-ve —ms0 259 Fvat ARBE FusIL, #
nyoarv-ozm |l 335 R b i

JEER XA R R KA KRR KRR R RO E KKK KX R SR KRR XX RN RN R A X%/

+/

Fig. 1. The HP SoftBench envi-
ronment with Japanese localiza-
tions.

|
|
|
|
|
|
|

JUNE 1990 HEWLETT-PACKARD JOURNAL 43

| most of the drawing and data storage functionality. At creation
time the edit widget decides whether to create 8-bit or 16-bit
pseudo-objects. This allowed significant code sharing. The lan-
guage-sensitive actions of the HP SoftBench environment were
added in a similar manner. In this case one of the primary benefits
was to allow two different engineers to work on tightly coupled
code with minimal interference.

S —

Warren J. Greving

Kathryn Y. Kwinn

Software Development Engineers
Software Engineering Systems Division

(continued from page 42)

execution capability, the team’s environment can be cus-
tomized to execute every user’s builds on the dedicated
compile server. This allows the team members to maintain
full performance on their personal workstations while their
compiles are performed on the server, which is not bur-
dened with other tasks that might slow down the compila-
tions. The same notion can be applied to any of the tools.

Remote Data

In the HP SoftBench environment, data can reside on
any host in the network. Regardless of where a tool is
running, it can access the data. The user provides an HP
SoftBench file specification, which may contain an op-
tional host field (e.g., machine1:/ust/src/projectiffilel.c). If a re-
mote host is specified, the distributed data facilities are
automatically employed to establish the path to the remote
file.

With large teams, it is often easier to manage and ad-
minister data centrally than to have the data duplicated on
each workstation in the network. For example, configura-
tion management, tape backup and archiving, and project
management are typically easier when the project files are
centralized. This was and remains one of the benefits of
timesharing systems.

The most common application of the remote data feature
is the use of a data server. For projects that prefer or require
dedicated computing power for each engineer, yet wish to
have a common location for project data, the HP SoftBench
distributed data capability facilitates this. Project members
can run their tools locally but designate and use a common
computer and file system location for project files (e.g.,
fileserver:/usr/src/project1).

Remote Display

HP SoftBench tools are built on the X Window System
Version 11, which is a network-transparent window sys-
tem. One of the benefits of the X Window System is that
X programs can run on one system and display visually
on another. In fact, to run the HP SoftBench environment,
the only process that must actually be observable to the
user is the X display server, which requires a bit-mapped
display and adequate RAM.

The extreme example of this is the X terminal products
that are now appearing. These act as smart terminals that
run the X display server and connect to the network. The
HP SoftBench tools the user runs actually execute on other
computers in the network. Moreover, the computers that

44 HEWLETT-PACKARD JOURNAL JUNE 1990

actually run the HP SoftBench tools do not need to be
running X11. They must simply support the X11 client
library interface and be connected to the network.

The HP SoftBench remote execution, data, and display
capabilities described above enable diverse configurations
of workstations, servers, and larger computers to be em-
ployed, based on the needs of the user’s team, to increase
software development throughput and decrease per-seat
cost (see “Distributed Data, Execution, and Display,” page
40).

User Interface Management

To provide a consistent appearance and behavior among
the many HP SoftBench tools, and to facilitate the use of
the OSF/Motif user interface style, the HP SoftBench inte-
gration services contain user interface management soft-
ware. This software provides support for schemes (see
“Schemes: Interface Consistency,”” page 41), pervasive code
editing and viewing (see “Pervasive Editing in the HP
SoftBench Environment,” page 42), native languages (see
“Native Language Support,” page 43), and interactive help
(see “Integrated Help,” page 57).

User Model

The HP SoftBench tools have been designed so that they
can support many different styles of work. A programmer
doing rapid prototyping may use the same set of HP
SoftBench tools as one doing maintenance, but they may
be used quite differently, since the task is different.

The programmer doing rapid prototyping may keep a
“home base” in the program editor, while one doing
maintenance may have a home base in the static analyzer.
However, both have easy, integrated access to the other HP
SoftBench functions such as file version management and
program builds.

In the HP SoftBench system model, each tool provides
the actions that are appropriate based on the type of data
managed by the tool. For example, in the program editor,
source files are viewed and manipulated. However, the
programmer can also check in and out the currently edited
file, cause the file to be compiled, and ask static analysis
queries, such as where a given function is defined. The
static analyzer provides cross-reference and code browsing
information, yet the programmer can edit the files being
viewed, check them in and out of version control, and
cause the files to be rebuilt. This remote access to other
tools’ functionality is provided by the HP SoftBench tool
communication architecture. It lets the programmer con-
centrate on the task at hand, while the tools cooperate
among themselves to perform requested operations.

Human Interface

The HP SoftBench environment provides an object-ac-
tion user interface model. The user first selects the object
that will be operated on, and then selects one or more
actions to be performed on that object. The environment
works to provide a task-oriented, rather than a tool-oriented
view of the environment to the user. The HP SoftBench
user interface style was significantly influenced by the HP
NewWave user interface work.?

| ”Mechanisrms for Effri(;‘iv(;ﬁtwlv)élivery

The HP SoftBench environment is composed of several com-
municating processes, all running under the HP-UX operating
system and the X Window System Version 11. Each HP SoftBench
tool is built on the X Version 11 C library interface, the X toolkit,
the HP widgets, and the HP SoftBench common code library.
Most X toolkit applications are very large because of the sizes
of the required libraries. Each of the dozen HP SoftBench pro-
cesses would be well over a megabyte in size if it were linked
in the standard fashion, having its own private copy of all the
library code.

To deliver the HP SoftBench environment effectively, we de-
veloped a delivery technology that significantly reduces the size
of the tools and improves the performance. To the user, these
facilities are completely transparent. The user runs HP SoftBench
tools just like any HP-UX program or shell script. These facilities
are not available to the end user. They are used only to ensure
effective delivery of the HP SoftBench tools.

The large executable size is a problem, but not only because
of the disk storage space required. With several of these pro-
grams all running at once (as they typically are in the HP
SoftBench environment), the physical RAM in the computer can
be exceeded by a large factor. The virtual memory system allows
the system to continue to run, but performance degrades as
more pages of memory are moved to the swap device.

The solution was to have just one copy of the library code,
rather than many. The common library for all the HP SoftBench
applications is about one megabyte in size. All of the SoftBench
tools (except the HP Encapsulator) are less than 200K bytes in
size when stripped of their private copies of the library.

Implementation
The idea of shared libraries is not new. Many UNIX implemen-
tations support them. However, no shared library facility existed
on the HP-UX operating system at the time we needed it for our
product, so we implemented our own. There were some technical
choices to be made:
® Where should the shared code physically reside so that it can
be accessed simultaneously by all of the tool processes?
® How can the individual tools be linked to the shared code so
that the addresses of entry points and globals are properly
resolved?
® How can the various tools be invoked such that the attachment
to the shared library is transparent to the user?

Storing the Code

Our first approach was to use shared memory segments. These
are regions of memory that can be created by one process and
then accessed by many others. We loaded the library code into
one or more of these segments. Any tool could then attach to
these segments and execute code directly out of them. This was

The HP SoftBench environment follows the OSF/Motif

appearance and behavior. This interface technology is
largely mouse- and menu-driven, with human-computer
interaction occurring primarily through dialog boxes (see
Fig. 3).

Several benefits are provided by the OSF/Motif technol-

ogy:

A rich set of primitives on which to build sophisticated
user interfaces.

conceptually very simple. We could put each separate library
(libc.a, libX11.a, libXt.a, etc.) into its own segment, and each appli-
cation only had to attach to as many segments as it needed.
However, there were problems with this approach. First of all, it
required an explicit step in the initialization of the environment
to create these segments and load them. It also required some
user action to deallocate them when taking down the environ-
ment. Also, on HP PA-RISC computers, there was a performance
degradation if an application needed more than two of these
segments.

The solution was to put all the library code into a demand-load-
able executable program. The HP-UX system automatically
shares the code of such an executable if it is being executed
simultaneously by multiple processes.

Linking the Code

At first we tried to link each of the tools statically to the library
code. The HP-UX linker Id has a special option to do this. This
approach would have been the most straightforward way of de-
livering the product to users, but we found that it was too inflexible.
Once the tools had been statically linked to a particular library,
any changes to the library required relinking all the tools. We
needed rapid prototyping: as we changed or added features to
the library, we wanted to test the changes quickly without having
to rebuild everything.

The solution was to delay linking the tools until run time. A
dynamic loader resolves external symbols and relocates the code
when the application is loaded. This link step is very fast (1 to 2
seconds) because it all happens in memory. The tools themselves
reside on disk as standard unlinked .o files.

Invoking the Tools

As a result of the decisions just described, all HP SoftBench
tools are invoked by running a single, large, demand-loadable
program that contains a dynamic loader and all of the common
library code for the product. This program is called runprog until
it becomes part of the HP SoftBench product. It is possible to
run any of the HP SoftBench tools by executing runprog explicitly,
but there is a quick trick that hides what’s going on. We use the
HP-UX In command to give runprog several aliases. There is still
only one runprog, but each of the HP SoftBench tools is actually
just another name for it. Runprog figures out which tool to run by
looking at its own invocation name, argv[0], then appends .o to
that name and invokes the dynamic linker. Now HP SoftBench
tools can be executed transparently as in any other HP-UX pro-
gram or shell script.

Sam Sands
Software Development Engineer
Software Engineering Systems Division

Keyboard traversal for users who prefer to perform some
or all operations from the keyboard rather than with a
pointing device.

Native-language input and output for accepting and dis-
playing languages requiring 8-bit and 16-bit character
sets.

User-definable keyboard accelerators for common menu
actions.

' Consistency with PC-based applications to facilitate in-

JUNE 1990 HEWLETT-PACKARD JOURNAL 45

Application of a Reliability Model to the HP SoftBench Environment

The HP SoftBench team decided to incorporate a statistical
reliability model into the data gathering process during the sys-
tem test phase to help us better understand the current quality
level of the code and predict how long it might take to attain a
given quality level. The model is based on the work of Kohoutek, '
with additional results from Musa, Okumoto, and Goel.?2 Similar
models have been used in other HP Divisions.**® We learned
of it from Doug Howell.”

The basic idea is to fit a logarithmic Poisson execution time
model to the plot of defects found versus time. At time t (in hours),
the number of defects found, u(t), is given by:

ult) = 61 —e M)

where 6 is a scale parameter and \ is-the defect finding rate.

Each week, when we had a new data point on the graph of
defects found versus test hours, we used nonlinear least squares
iteration to find the @ and \ that produced a best fit of the u(t)
curve to our data. From the very beginning, the fit of the curve
to our data points was remarkable.

The scale parameter 0 is the limit of the function u(t) as t
approaches infinity—that is, it is the number of defects the model
predicts are in the product. We found the stability of 6 over time
to be an interesting subject; we will say more about this below.

The first derivative of u(t) is the rate at which defects are being
found. The reciprocal of the finding rate is the instantaneous
mean time between defects (MTBD) at time t:

MTBD = 1/u’(t) = (1/\)e'®

This equation was extremely useful, since it allowed us each
week to predict when a given MTBD would be achieved. We
solved this equation for t for various values of MTBD, given the
current values of # and \. We then converted t from hours into
calendar time by dividing by the average number of test hours
we were logging per week.

This gave us a weekly prediction of the calendar date when
we would achieve an instantaneous MTBD equal to our goal. We
noticed that @ (hence the prediction) was fairly unstable at first.
Then we fitted u(t) to different data. Instead of computing 6 based

teroperability across computing platforms.

Conclusion

We have described the various mechanisms provided by
the HP SoftBench tool integration architecture for tool com-
munication, distributed data, execution, and display, and
user interface management. The communication facilities
are exploited by the HP SoftBench software development
tools to collaborate in presenting a task-oriented environ-
ment to the programmer. The distributed execution, data
and display services are used by the tools to allow the user
to make effective use of the computational, file storage,
and presentation capabilities available on the network.
This can improve performance, reduce per-seat worksta-
tion cost, and facilitate development for large software
teams in a distributed environment. The user interface
management facilities allow the tools to present a consis-

46 HEWLETT-PACKARD JOURNAL JUNE 1990

on the plot of raw unweighted defects versus test hours, we used
what we call filtered weighted defects. Duplicate reports and
enhancement requests were removed from the count, and de-
fects were weighted according to the severity assigned to them
by the project team (on a scale from 0 to 1).

This of course gave us an MTBD that meant something different
than before. It was now the instantaneous mean time between
virtual defects of weight 1 instead of the time between any defects
found, regardless of severity. We decided that this new MTBD
number actually meant more, given that the SoftBench product
is user-interface-intensive and many people were submitting low-
weight defects that were stylistic, personal preference issues

When we switched to computing # based on the filtered weight-
ed defect plot, it became quite stable. Several months ahead,
we predicted that we would reach our MTBD goal on a particular
date. The actual MTBD on that date was 95.7% of the goal, and
we reached the goal and did our final build five days later.

We feel that the use of this simple model was very successful
in achieving the objectives of understanding where we were and
providing a rational (as opposed to emotional or schedule im-
posed) prediction of when we would be finished.

References

1. H. Kohoutek, “A Practical Approach to Software Reliability Management,” Proceed-
ings of the 29th EOQC Conference on Quality and Development, 1985, pp. 211-220

2. J.D. Musa and K. Okumoto, “A Logarithmic Poisson Execution Time Model for
Software Reliability Measurement,” IEEE Transactions on Reliability, Vol. R-33, 1984
pp. 230-381

3. A.L. Goel and K. Okumoto, "Time-Dependent Error Detection Rate Model for Soft-
ware Reliability and Other Performance Measures,” IEEE Transactions on Reliability
Vol. R-28, 1979, pp. 206-211

4. H.D. Drake and D.E. Wolting, “Reliability Theory Applied to Software Testing
Hewlett-Packard Journal, Vol. 38, no. 4, April 1987, pp. 35-39

5. G.A. Kruger, "Project Management Using Software Reliability Growth Models,” Hew
lett-Packard Journal, Vol. 39, no. 3, June 1988, pp. 30-35

6. G.A. Kruger, “Validation and Further Application of Software Reliability Growth
Models,” Hewlett-Packard Journal, Vol. 40, no. 2, April 1989, pp. 75-79

7. D. Howell, "A Simple Method for Predicting the Duration of Software QA," Internal
Memo

Tim Tillson
Project Manager
Software Engineering Systems Division

tent, localizable, customizable environment that is easy to
learn and use.

The HP Encapsulator provides these integration services
to existing nonSoftBench tools, without requiring access
to the tools’ source code.

Acknowledgments

The HP SoftBench product began as a research project
in the Software Technology Laboratory of HP Laboratories
in Palo Alto, California, under the internal name Ivo. The
decision was made to build a product based on this research
at the Software Engineering Systems Division in Fort Col-
lins, Colorado. The HP SoftBench product involved a great
many people in R&D, marketing, and the field. Special
thanks to HP SoftBench product marketing engineer Becky
Hennig, our human factors engineer Greg Foltz, the HP
SoftBench QA team led by Don Watt, Roy Williams, and

I I
~—*] SoftBench — Development Manager f a lJ
File Version Directory Actions Help

Context: hpfemrc: /users/cagan/Project Tower

<Parent> Directory a
Makefile Versioned — Build

RCS Text

audio.h { I
callbad —'l Development Manager

callbag - :

callkadl Check In file: logic.c

Revision

logic.o evision: [} Keep Locked?

logic.

- cq State: [7] cancel Lock?

main.o

main.q Comment:

tower

tower.H The A-300 configuration defect has .

been corrected. See Defect ¥3188-A0.
B e Y
| - I OK H Cancel] al

Lo r

Fig. 3. An example of a dialog box prompting the user for
version information.

Kirsten Duff, the documentation team of Mary Edelmaier,
Dave Koons, and David Wolpert, and our partners at the
Corvallis Workstation Operation, the California and Col-
orado Languages Laboratories, HP Laboratories, and the
Software Engineering Systems Division in Palo Alto.

The HP SoftBench integration platform was designed
and built by Michael Baumann, John Diamant, Jerry Dug-
gan, Colin Gerety, Warren Greving, Bill Kwinn, Kathy
Kwinn, Sam Sands, Gerrie Shults, Tim Tillson, Jack
Walicki, and Judy Walker.

References

1. R.Ison, “An Experimental Ada Programming Support Environ-
ment in the HP CASEdge Integration Framework,” Proceedings of
the International Workshop on Environments, Chinon, France,
September 1989.

2. B. Balzer, “Living in the Next Generation Operating System,”
IEEE Software, November 1987, pp. 77-85.

3. L Fuller, “An Overview of the HP NewWave Environment,”
Hewlett-Packard Journal, Vol. 40, no. 4, August 1989, pp. 6-8.
4. G. Boudier, F. Gallo, and I. Thomas, “Overview of PCTE and
PCTE+,” ACM SIGPLAN Notices, Vol. 24, no. 2, February 1989.
5. S. Reiss, Overview of the FIELD Environment, Brown Univer-
sity, Department of Computer Science, November 1987.

6. M. Cagan and A. Ishizaki, “Ivo: An Integrated CASE Environ-
ment,” Proceedings of the Hewlett-Packard Software Engineering
Productivity Conference, 1986.

7. M. Cagan and D. Young, “The Ivo Tool Integration Platform,”
Proceedings of the Hewlett-Packard European Software Engineer-
ing Productivity Conference, 1987.

8. G. Stearns, “Agents and the HP NewWave Application Program
Interface,” Hewlett-Packard Journal, Vol. 40, no. 4, August 1989,
Pp. 32-37.

9. P. Showman, “An Object-Based User Interface for the HP New-
Wave Environment,” Hewlett-Packard Journal, Vol. 40, no. 4,
August 1989, pp. 9-17.

JUNE 1990 HEWLETT-PACKARD JOURNAL 47

A New Generation of Software

Development Tools

The HP SoftBench environment’s development manager,
program editor, program builder, static analyzer, program
debugger, and mail collaborate to support task-oriented

program construction, test, and maintenance.

by Colin Gerety

article on page 36, provides an integrated software
development environment designed to facilitate
rapid interactive program construction, test, and mainte-
nance in a distributed computing environment. This article
presents examples of computer-aided software engineering
(CASE) tools that use the services of the HP SoftBench tool
integration architecture.
The HP SoftBench environment is designed for software
development teams that have the following characteristics:
" They need strong program construction, test, and mainte-
nance support.
¥ They want to automate tasks in their development pro-
cess.

¥ They want a task-oriented system that is easy to learn
and use.

® They want to integrate their existing tools into their de-
velopment environment and processes.

The HP SoftBench environment is designed so that users
can focus on software development tasks rather than on
the specific tools needed to accomplish the tasks. Instead
of having to specify tools, arguments, and data for each
step required to perform a task, HP SoftBench users select
an object to operate on (for example, an executable file)
and then specify what they want to do (for example, debug).
The environment determines what tools to run, what
machine to run them on, how to start them, what arguments
are required, and where the data resides that they will
operate on. On the other hand, HP SoftBench users who
prefer the conventional tool-oriented mode of operation
can work in that mode at their option.

The HP SoftBench tools collaborate to support five
targeted software development tasks. Two of these—team
file management and team communication—are pervasive.
The other three—program construction, program testing,
and program maintenance—support specific software life
cycle phases. A set of HP SoftBench tools assists the user
with each of these five tasks. The current HP SoftBench
release supports software development in C, Fortran, and
Pascal.

T HE HP SOFTBENCH PRODUCT, as explained in the

Team File Management

Teams of software developers working together need
ways to manage access to and revisions of the files that
compose the software project. Team members need a stable

48 HEWLETT-PACKARD JOURNAL JUNE 1990

and controlled area to develop and test the project software.
They also need an easy way to retrieve changes and addi-
tions to the project files made by other team members, so
that they can test their own changes with the latest version.
Once they are satisfied that their modifications work with
the latest version, they need to submit or promote their
modifications or additions into the master set of project
files. The HP SoftBench development manager provides
these services (see box, page 49).

The notions of reserving, locking, or checking out a file
and then replacing or checking in the modified file are
central to all development, test, and maintenance activities.
Therefore, all HP SoftBench tools that allow modification
of project source files communicate directly with the de-
velopment manager to retrieve the current file from the
version management system or to return it.

For example, if you are a developer who wants to modify
a file, you request access to the file through the develop-
ment manager. If another developer is already in the pro-
cess of modifying that file, the development manager de-
nies the request and tells you which team member is al-
ready working on the file. In this case, you can either ask
the development manager to create a branch, which will
need to be merged with other changes later, or you can
contact the named team member, either directly or through
HP SoftBench mail, to negotiate access to the file.

In addition to this team support, standard versioning
operations are provided, such as storing change informa-
tion for files so that previous revisions can be retrieved.
Also included is the ability to tag specific file versions
with symbolic names, such as Release 1.0, or with specific
states, such as Experimental. Sets of files that make up particu-
lar configurations of the project can be stored and retrieved
on demand. You may want to retrieve, for example, all the
files that make up Release 2.0 or all the files for a certain
HP-UX version that have been tested. You might also ask
to retrieve the project files as they were on January 9.

Team Communication

HP SoftBench team communication support is designed
to facilitate communication among members of the project
team so that shared resources are efficiently used, develop-
ers are notified of key system events, and work and meet-
ings can be arranged and coordinated. Like team file man-
agement, team communication is a pervasive task, neces-

Development Manager

The HP SoftBench development manager manages the ver-
sions of files on which the other tools operate. Fig. 1 shows the
development manager user interface. The user can check files
in and out, examine change histories, and compare revisions.

In the development model supported by the development man-
ager, each person has a private, local work area, which is as-
sociated with a team or master work area. The development
manager presents a view of the files in the user’s work area,
along with the state of each file (file type, whether it is under
version control, whether it is locked or writable).

I
= T
l Soft8 f—xl Development Manager

File Version D
Check Out file: main.c

{Parent> :j i
Makefile botes [| MLoa?

RCS

callbacks.c State: E

callbacks.o

Context: hpfcmrd

callbacks.
logic.c 4 1 ‘ oK ” Cancel] |
logic.o T 1
logic.q Static Analysis

i Yersioned — C Source]
main.o Object
main.q Static Analysis

tower Executable
tower.h Yersioned — Include

1

Fig. 1. Development manager user interface.

The version management functions provided by the develop-
ment manager can be accessed directly through the develop-
ment manager user interface or indirectly from the other tools
via the development manager’s message interface. For example,
all HP SoftBench tools that provide the ability to edit source files
(e.g., static analyzer, program builder, program editor) allow the
user to check files in or out from version control. The tools do
this by communicating with the development manager to perform
the requested services. Thus the development manager’s version
control is pervasive throughout the environment.

The development manager also serves as an application
launcher. Actions are presented based on the file type. For exam-
ple, the user can run, rebuild, or debug an executable file and
edit, compile, and show functions of a C source file. Some actions
are serviced directly by the development manager, while others
are forwarded via the broadcast message server to other HP
SoftBench tools or user encapsulations.

Anthony P. Walker
Software Development Engineer
Software Engineering Systems Division

sary in all phases of software development.

The HP SoftBench product includes an electronic mail
facility, HP SoftBench mail (see Fig. 1). Besides the stan-
dard electronic mail capabilities of viewing, replying to,
and filing messages from others and composing and for-
warding messages to others, HP SoftBench mail is designed
to link into the rest of the software development environ-
ment. As an example of such a link, HP SoftBench mail
can be instructed to watch for the completion of a system
build and send out an announcement to members of the
team if the build fails. If the build is successful, HP
SoftBench mail can announce the success, letting the team
know that a new release of the software is available (see
Fig. 2).

More information on the HP SoftBench mail tool can be
found in the article on page 59.

Program Construction

Program construction is the transformation of a design
into an executable program. The HP SoftBench environ-
ment supports either writing new source code or assem-
bling software from existing components, or a combination
of the two.

Large projects often contain one or more common code
libraries, designed to be reused throughout the application.
Software reuse of this sort has been shown to be a major
factor in improving both software quality and productivity.
The HP SoftBench environment facilitates software reuse
by addressing one of the common obstacles to reuse: locat-
ing appropriate functions and procedures. The HP
SoftBench static analyzer (see box, page 54) assists in this
task by making it easy to search the project libraries, looking
at parameters, return values, and function definitions.

Programs are created, modified, or synthesized from
existing pieces in a program editor. The HP SoftBench pro-
gram editor (see box, page 51) assists with this task, and
provides quick access to the other program construction
tools. For example, the user can select a function name in
a program and ask the HP SoftBench environment to show
the definition of the function or other references to the
function within the application. The user can also check
the syntax of the program file under construction. The pro-
gram editor is targeted at programmers who are new to the
HP-UX operating system or who have worked in PC envi-
ronments and want a mouse- and menu-based editor. If the
user already has a favorite UNIX program editor, such as
emacs or vi, the HP SoftBench environment allows the use
of that editor instead.

Once the program source files have been created, the HP
SoftBench system analyzes module dependencies and con-
structs a recipe, or makefile, for building executable pro-
grams or libraries. The HP SoftBench system then builds
the program, compiling and linking only modules that are
out of date. If compile or link errors are encountered, the
user can correct them interactively. The HP SoftBench pro-
gram builder (see box, page 52) assists with this task.

The result of the program editor, program builder, and
static analyzer working together is a rapid edit-compile
cycle allowing quick exploration of alternative implemen-
tations or construction of new functionality.

(text continued on page 54)

JUNE 1990 HEWLETT-PACKARD JOURNAL 49

B e by ey Y

lMail Folder Message Settings Help
letters:
1 steve@hpfoo.sde.hp.com Wed Nov 1 15:82 13/390 File callbacks.c A
2 james@hpgvd.sde.hp.com Wed Nov 1 15:02 13/390 Build Successful
3 janet@hpbar.sde.hp.com Wed Nov 1 15:82 25/681 Release Party
4 chris@hpcnw.sde.hp.com Wed Nov 1 15:02 15/414 Project Milestones
g ! Delete I { Reply to Author... | i Print I { Compose... I gT
B { Refite I { Reply to All... I { Forward... | { List Folders... I ;
Message—Id: <9002122205.AA04370@hpbar. sde.hp.com>
To: colin@hplsf.sde.hp.com
Subject: Release Party
Status: RO
There will be a party to celebrate the success of
the Tower project on Jan 18, 1990. Hope
you can all be there:
Place: Cuisine Cuisine
Time: 8:00pm
Date: January 18, 1990
Attire: Black Tie
RSYP Requested.
Janet
R — — o o NGBS, el Hee
Lumm — - Se— interface.
1 T
— SoftBench — Mail J-117]
Mail Folder Mes f :
‘—-l Triggers
System mailbox:
1 Glaire_phi Release Announcement: QO Active Visit
2 cagan@hpfc Send to: [] ntegr
3 carol_siac
Y Annotations: m
< E—
B Delete
B PR S T PO S o
E’:] Refite
S ful Build A nent: @ Active —
To: cagan@hpfcjr ¥
Subject: Re: Ano Send to: [team l
Hi Marty, Annotations:
v The tower project has just been successfully
Esi the GLher ma built. You can update from your Development
and gave the add Manager.
Janet In A e S SRRSO SRRSO AR &
INRIA -
Route d
B;;ﬁ; V: Failed Build Announcement: @ Active
FRANCE Send to: I““"‘ }
thanks again. Annotations:
see you The tower project build has failed. The error
janet log is attached. Please correct ASAP.
<4 »
i & I .
=~ Fig. 2. Setting up HP SoftBench
mail triggers.

50 HEWLETT-PACKARD JOURNAL JUNE 1990

Program Ediﬁﬁ'

Editors are controversial. Despite considerable reluctance,
based on our conviction that there are already too many editors
for HP-UX programs, we found ourselves writing a new editor
for the HP SoftBench environment. The requirements that forced
this decision were:
® Language sensitivity. The primary job of the HP SoftBench

editor is program editing. To be effective, the editor should

be language sensitive. This ruled out the TextEdit widget in the

X toolkit.

Ease of learning and use. We wanted an easy-to-use mouse/

menu interface consistent with the other HP SoftBench tools.

Embedded edit capabilities. The HP SoftBench tools must

prompt the user for information. These prompts may be em-

bedded in the tool window. Without a difficult encapsulation,
stand-alone editors like emacs or vi cannot be used in this way.

1 Consistent interface. It was an HP SoftBench requirement that
editing commands be consistent in all editable areas of all
tools.

Broadcast message support. To be a good citizen of the HP

SoftBench environment, an editor should make its functionality

available through messages and make other tools (e.g., the

HP SoftBench program debugger) available from the editor.

To satisfy these requirements, we created the edit widget (see
page 42). Given the edit widget, the editor is just a sophisticated
wrapper on the existing functionality.

A user can configure the system to have edit requests serviced
by another editor, but one or more of the goals of the system
editor will be sacrificed. If viis chosen, consistency and broadcast
message support are sacrificed. If emacs is chosen, the consistent
mouse/menu human interface is sacrificed.

In the HP SoftBench program editor, each file is given its own
window and menus are used to give easy access to the editing
functionality (see Fig. 1). Messages are used to communicate
with the HP SoftBench program builder, static analyzer, and de-
velopment manager tools.

The HP SoftBench editor is designed for editing programs, as
opposed to general prose. It has knowledge of program struc-
tures like procedures, blocks, and tokens and can use this infor-
mation to control indentation and balance delimiters.

The easy-to-use menu/mouse interface is particularly effective
for writing code. In the HP SoftBench environment there are
mouse functions for selecting tokens, blocks, and procedures
and there are mouse functions for cut, copy, and paste opera-
tions. Because program code involves repeating similar struc-
tures, code can be written very quickly in the program editor by
copying a structure that is similar to the needed code and chang-
ing it to the desired form.

For example, once code similar to what is needed is pasted
into place, a typical change is in the names of variables. The
edit widget replaces selected text with whatever is typed next.
To make a change in the name of a variable that occurs several
times, the first instance of the old variable name is selected by
double-clicking the left mouse button. The new name is typed,
replacing the old name. The new name is then selected and
copied into the paste buffer. Additional instances are changed
by selecting the old token and pasting the new token inits place.

Colin Gerety
Software Development Engineer
Software Engineering Systems Division

I

“J} SoftBench — Program Editor

File Edit Buffer Procedure Block Token? Help

File: hpfcmrc:/users/cagan/Project/T ") Show Definition

2) Show References

Language: C
Package: N/& 9)) Show Classification
Status: Experimental (Do NOT DISTrIputey

® ¥ X X

*/

#include "tower.h"
#include "audio.h"

extern Widget ring list[];
extern Display *xdisplay;
extern PIN pin[];

extern Boolean audio_value;

void m(from, to, disk_number)

int from, to, disk_number;
{

int new_x, new_y;
Arg wargs[2];

/* adjust pin count */

(c) Copyright 1989, Hewlett-Packard Company, all rights reserved.

RAROK A ACK ORI K A K HOK AR A KKK AR KK AR AR AR AR A K AR A OK AR AR K K K K KK K K K K KK K K K KK KKK K

{4

Fig. 1. Program editor user inter-

I face.

JUNE 1990 HEWLETT-PACKARD JOURNAL 51

Program Builder

ST

The HP SoftBench program builder is a tool that simplifies the
compile and link phases of the typical edit/compile/link/debug
loop used during software development (see Fig. 1). It shortens
this part of the cycle by compiling only the parts of a program
that require recompilation because of direct or indirect changes.
In addition, the program builder provides an error browsing fea-
ture that facilitates direct access to identified source code errors,
thereby speeding up the edit phase of this cycle.

In an effort to simplify further the task of building and maintain-
ing a software project, the program builder provides facilities for
creating and maintaining the dependency control files required
for intelligent builds. This frees the user from having to deal with
the format and content of such files.

Rebuild Only What Is Necessary

The program builder compiles only the parts of a program that
have changed since the last build. If an include file common to
several source files has changed, the program builder is smart
enough to compile all files that depend on (i.e., include) that file.
This ensures that any change will be correctly propagated
through the entire software project.

In reality, it is not the program builder that performs these
dependency control tasks. It is the build program invoked by
the program builder that has these abilities. The program builder
provides a friendly and consistent user interface to this underlying
program. The UNIX automatic dependency control program make
is the default program used to provide this functionality. Make
does its job by using time stamps maintained by the file system
to determine if source files have changed since the last time they
were compiled. If any files (or dependent files) have changed,
make Will invoke the appropriate compiler to recompile only those

files and relink them.

Although the default build program is make, almost any build
program can be substituted. The program builder does not care
what build program is run. This makes it very simple to adapt to
new build technologies. The only thing that really needs to be
known about the build program is how to pass compiler flag
information through it to the compilers. The program builder must
be able to control certain compiler behavior, including the gen-
eration of information required to debug a program, the genera-
tion of information required for static analysis, and the optimiza-
tion of code for speed. This is necessary because the program
builder message interface allows specification of parameters that
request these behaviors. For example, the static analyzer tool
will always request static information when it sends a build re-
quest to the program builder.

By default, the program builder passes compiler flags through
well-defined environment variables that all HP compilers know
to look at, effectively bypassing the build program. Therefore,
almost any build program and related makefile should be usable
without any changes to the program builder configuration or
makefile.

For some build programs, such as the AT&T ToolChest pro-
gram nmake, which keeps track of the compile options used to
do a build, this scheme is not acceptable. Nmake will force all
files to be recompiled if compile options change. Therefore, the
program builder can be configured to pass compile options
through the build program on the command line using almost
any syntax that is appropriate for the build program or makefile.

Automatic Generation of Dependencies
For make to do its job, there must be a makefile that contains

XtSetArg(wargs[@], XmNx, new_x);
XtSetArg(wargs[1], XmNy, new_y);
XtSetValues(ring list[disk_number-1], wargs, 2);

if (audio_value == True)

beep(VOICE, PITCH » EEFYIRRTYY, VOLUME, DURATION);

sleep(PAUSE_DURATION);
s

T T T T
= SoftBench — Program Builder [* l_l ,_)! SoftBench — Program Builder [4 L'_J
File Edit Buffer Makefile Actions Settings Help File Edit Buffer Makefile Actions Settings Help
9
T I

Context: hpfcmrc:/users/cagan/Project Tower Context, Lgl Program Builder

Options: |- f Tafgee L] Options:i | ¢, eate Program Makefile:

n
CCOPTS=—g —y; FCOPTS=—g —y; PCOPTS=—g -y CCOPTY ,
make make PROGHAM: |]
cc -DSYSV -c logic.c

"logic.c", line 65: disc_number undefined] FLAGS: I l
*kk Error code 1

Stop. PREVIH LD;[CC }
Non-Zero status from child process.

BUILD-TARGET Failed v LoFLAGS: |]
L —— x - [— I }

DIRS:
- [
hpfemrc: /users/cagan/Project/Tower/logic.c Save hpf cmr LIBS: I ../Lib/libutil.a]
new_x = pin[te].location — ((RING_WIDTH_FACTOR * disk_number) A */ R I [& ;
new_y = PANEL_HEIGHT_FACTOR - (pin[to].ring count % RING_HEIC 1 L ance
/* @(¥ T

#endif
void shuffle(from, to, spare, number)
int from, to, spare, number; /%
{ * Descriptor table entry.
if (number == 1) * One for each kernel object.
move_ring(from, to, number); i x/ o
M= T e S | s ————————— A i A AR I

T
$ifndef _SYS_FILE_INCLUDED /* allows multiple inclusion */
#define _SYS_FILE_INCLUDED

#ifdef KERNEL

#include "../h/types.h"
Tinclude "../h/fcntl.h"
felse

#include <sys/types.h>
#include <fcntl.h>

Fig. 1. Program builder user interface.

52 HEWLETT-PACKARD JOURNAL JUNE 1990

Fig. 2. Creating a makefile in the program builder.

a list of source files required to construct the program. The
makefile must also contain dependency information (what files
depend on what other files) so that efficient builds can be per-
formed. For many UNIX users, for all but the simplest set of
source files, makefiles are quite magical and for the most part,
unintelligible. Maintaining them is a nightmare, and creating them
is very difficult. The program puilder provides a user friendly
interface for the creation and maintenance of these files. It auto-
mates these tasks by using the HP-UX program mkmf (make
makefile) for both creation and maintenance.

To create a makefile, the Makefile: Create Program menu selection
is used. A simple fill-in-the-blanks form is then displayed in a
window (see Fig. 2). All entries are optional, but the user typically
will specify items such as an executable file and any extra libraries
to be linked with the program. After the OK button is pressed,
the program builder causes mkmf to scan all of the files in the
context directory and construct a makefile based on the depen-
dency graph generated from its analysis of the source files. The
program builder supports creation of makefiles for archive li-
braries as well as for programs.

To update a makefile, the user simply selects the Makefile: Update
menu selection. The program builder will then invoke mkmf to
rescan all source files and update the dependency information
in the existing makefile.

Makefiles can contain numerous targets for performing a vari-

ety of tasks other than building a program. Specifying one of
these targets in the TARGET window of the the program builder
and starting a build (pressing the BUILD button) causes the action
associated with that target. Some of the targets provided in
makefiles generated by the program builder include:
= print. Format all of the source files and output to the printer.
lint. Run lint over the source files to check for syntax errors.
clobber. Remove all reproducible files (o files, program files,
core files, etc).
clean. Remove all object (.0) files.
touch. Touch (update the time stamp of) all source files.
It is often desirable for more experienced users t0 customize
the actions associated with these targets or to add new targets
for additional functionality. To this end, a menu selection (Makefile:
Edit) is available so that the makefile can be edited in the edit
area of the program builder or in a separate window.

The program builder attempts to deal gracefully with build
requests when no recognizable makefile is present. It is often
the case that a single directory may contain numerous simple,
self-contained programs. While it is currently not possible to in-
struct the program builder to build all of the programs in the
directory without a makefile, requests to build individual pro-
grams are handled correctly.

%

=

Error Browsing

A useful feature of the program builder is the error browser.
The program builder presents compilation errors to the user in
a browsable list. It is @ simple matter for a programmer to walk
through the list of errors, fixing them one at a time.

Error recognition is based on regular expressions and therefore
is easily extensible. The regular expressions are stored in a file
and read into the program builder during initialization. The file
supplied with the program builder contains expressions for all
of the languages supported by the HP SoftBench system (HP
9000 Series 300 and Series 800 compiler errors are recognized).
The user can supply afiletobe used in place ofthe defaultfile.

To be recognized, all errors must contain a filename and a
line number. The error need not be specified on a single line,
but may span several, as for the Series 800 Pascal compiler.
The file that contains the regular expressions supports syntax

that allows the user to specify how many expressions must be
matched to recognize a line or set of lines as an error.

Each line received by the program builder from the build pro-
cess is shown in the build output area and compared with the
current list of known regular expressions. If it matches one of
the expressions (or matches the last line of a multiple-line expres-
sion whose preceding lines have already been matched), the
filename and line number are stored in the list of recognized
error lines. Selecting any of these lines will display the associated
source code line in the file view area. The error buttons (FIRST,
NEXT, etc.) are available to cycle through the errors in an orderly
manner. The program builder uses features supplied by the HP
SoftBench edit widget (floating line marks) to ensure that error
line references remain accurate as sourceé code lines are inserted
or deleted.

This facility is not limited to compiler errors. A useful example
of its flexibility is a grep browser. The program builder can be
configured to act as one by changing the build program (either
via the menu or by a resource specification) to grep, specifying
_n in the program builder OPTIONS window to ensure that grep
generates line numbers in its output, and specifying a pattern
and a list of files to search in the OPTIONS window. The regular
expression for recognizing grep output is already present in the
default regular expression file supplied with the program puilder.
Now, when a build is performed, all output from grep Will be
recognized as errors. Thus, selecting any of the output lines or
using the error buttons (FIRST, NEXT, etc.) will display the selected
file at the indicated line number in the file view area of the program
builder tool. This flexibility can be used to create a browser for
many tools.

Remote Builds

The program builder supports a simple distributed or remote
build facility in addition to the standard HP SoftBench remote
execution and remote data facilities (see "Distributed Execution,
Data, and Display,” page 40). This allows users to specify any
machine in the network (to which they have access) to be used
as a compile server. While this facility does not implement true
distributed builds (builds where the various compiles and links
needed to complete a build request are distributed across vari-
ous computers on a network), it does allow the user to assign
the compute and /O intensive task of compiles and links to &
machine that may be better able to handle these demands. Be-
cause of its simplicity, the program builder does not preclude
true distributed builds. Any build facility capable of such a task
can be substituted for the UNIX make program.

The HP SoftBench subprocess control (SPC) facility is used
for automatic execution of the build process on the specified
remote computer. Before the process is started, the SPC daemon
on the remote machine establishes a data connection to the
machine and directory specified by the program builder’s data
context. The current working directory for the build process is
then changed to match that of the context host and directory,
and the build is then performed as if it were run locally.

James W. Wichelman
Software Development Engineer
Software Engineering Systems Division

— = - -

JUNE 1990 HEWLETT-PACKARD JOURNAL 53

= - —— e |

The HP SoftBench static analyzer aids the user in understand-
ing source code. Fig. 1 shows its user interface. It supports
language independent queries about code structure and pro-
vides cross-reference information thatcan helpin finding defects,
planning code changes, or evaluating a piece of software for
reuse. Message communication with the development manager,
program editor, and program builder enhances its ability to pro-
vide window-based, interactive analysis.

The static analyzer receives its information from the compiler,
much the same as a debugger does. This has the advantage
that source code is parsed once and the results are shared
between static analysis, debugging, and program execution.

The compiler collects cross-reference information for the static
analyzer on all identifiers within a program and categorizes each
occurrence by how it is used. An assignment statement is
categorized as a modification to the identifier being assigned to,
while a variable definition is categorized as a definition. The static
analyzer supports queries that return a single category or group
of categories of references about an identifier. Often a user only
wants to see where the value of a variable has been changed
or how a function has been defined or declared in different mod-
ules. The static analyzer supports these queries directly, return-
ing only the relevant information.

A program may have many identifiers that have the same name,
but because they are different program elements or have different
scopes, they refer to different objects. For instance, a structure
field named slime may be defined within two different structures
and therefore represent two distinct entities that should not be
confused during analysis. When only the name slime is entered
and its uses are requested, the static analyzer will return the
uses of both fields because both are named slime and have uses.
However, if the user identifies slime by selecting it within a source
code view, then there is enough location information to indicate
which field is wanted, and only the references to the selected
slime will be returned.

Coupling these capabilities with program structure queries pro-
vides a tool streamlined for understanding and facilitating
changes to software. By allowing the user to ask questions about
a program, browse results to see program context, and use the

(continued from page 49)

Program Test

The program construction task results in an executable
program. However, this does not mean that the program
implementation perfectly meets its design requirements.
The task of analyzing the program to identify and correct
defects in implementation and design is known as the pro-
gram test task. On large projects, this is often avery difficult
process.

The HP SoftBench environment provides strong support
for understanding both the structure (with the static
analyzer) and the behavior (with the program debugger) of
large, complex applications.

The program debugger (see box, page 55) provides pro-
gram execution in a controlled environment. The user can
step through the program, watching for specific conditions,
pausing at any time to examine the state of data structures,
and monitoring the control flow through the various paths
of the program. If a variable is somehow being set to an

54 HEWLETT-PACKARD JOURNAL JUNE 1990

Static Analyzer

= SoftBench — Static Analyzer
File Edit Buffer [Show History Settings Help

Context: hpfemrc: /| References () File Set: Open
() toplevel Declarations () W] Scoping
Query: References Definition () oping Used: None
=3
Uses ()

in.c (34), mai

Madifications ()

Classification ()

|

|

Global Variables

Pattern Match ()

File: hpfcmrc:/users/cagan/Projcct/Tower/main. c

Read Only][Index

rd, audio_toggle, sta: |3
ze(argv[o], "Tower", |
oplevel);
etinBoard(toplevel, "
vel);
y
=
A

audio_value = True;

/* Initialize the Intrinsics x/
toplevel = XtInitializc(argv[B], "Tower", NULL, 0, Bargc, a
display = XtDisplay (CETSUREN) ;
/% Create a bulletin board */

bboard = XmCreateBulletinBoard(toplevel, "bboard", NULL, @)
XtHanageChild(bbnard),‘

/* Demo for Gayla */

XtAddEventHandler(audio_tnggle, ButtonPressMask, FALSE, tog;
XmToggchuttonSetStatc(dudio_toggle, True);

audio_toggle =)(mCreateToggleBuLton(bboard, "toggle", NULL, }

v

Fig. 1. Static analyzer user interface.

built-in language-sensitive editing, the HP SoftBench environ-
ment provides the user with a productive environment for software
understanding and software change.

Gary L. Thunquest

John P. Dutton

Software Development Engineers
Software Engineering Systems Division

illegal value, the user can trace the variable to locate the
conditions and location of the improper assignment. If a
function is being called when it shouldn't be, the user can
monitor the execution, watching for the conditions which
caused this call.

In analyzing the behavior of complex applications, it is
often useful to view the execution at lower levels of abstrac-
tion. The program debugger can simultaneously show the
program’s source code, the assembly code, and the proces-
sor’s register contents. The program debugger can walk
through the program’s execution either at the assembly
statement level or at the source statement level.

The static analyzer is often used hand in hand with the
program debugger. For example, if a variable ig being set
to anillegal value, the static analyzer identifies all locations
where the specific variable is set, and the program debugger
can be used to set tracepoints at each of these locations.

When a problem has been located and a change has been

(continued on page 56)

Program Debugger

The HP SoftBench program debugger provides a powerful yet

T i
simple user interface to the HP-UX symbolic debugger xdb, mak- = SoftBench — Program Debugger | Bl
ing users effective in their debugging tasks with a minimum of File [Breakpoints| Execution Trace Show Help
effort. We were surprised to learn how many users avoid using Contd AtProcedure Entry () jject Tower/tower
some HP-UX debuggers because of the difficulty of learning their PC: m} At Procedure Exit () th B
command languages. These users would rather resort to some ():[: AUECE !n
of the most tedious and time-consuming methods of tracking Fi ., A AadiessiC) . o [mies]
down simple bugs than master some esoteric tool. | Show Breakpoints = 5

Other goals for the program debugger were integration with Clear Breakpoints ’
the other HP SoftBench tools, provision of added value over the e e
standard HP-UX symbolic debugger, and exploration of the po- pin[1].Location, ~ BINILE;
tential for automated use of tools in the future. o ﬁi:}i}iii:ﬁii: - L I
User Interface gl l‘Trua;
Using the HP SoftBench program debugger, software develop- /% Tnitialize €he Intrinsics ¥/ L

ers can become proficient at common debugging tasks in very
short order, even if they are not familiar with the standard HP-UX
debuggers. Pull-down menus and accelerator buttons, along with p——
point and select operations with the mouse, provide a very simple EN
means for entering powerful debugging commands (see Fig. 1). aon
Almost all of the functionality of the standard HP-UX debugger
is available via mouse-oriented commands. Many sophisticated
sequences of commands are also made available with a single e Bragrantfo
menu selection. When the user must use a more esoteric com- <
mand, itis possible to type itin directly to the HP-UX debugger. -

The program debugger extends the user’s view of the program
being debugged by allowing more simultaneous views than stan-

xdb Ready Step|[Step Over|[Step Out][Continue| [Print)| Print Indirect ()|

: main: 39: pin[3].ring count = 8;

: main: 41: pin[1].location = PINI_X;
: main: 42: pin[2].location = PIN2_X;
: main: 43: pin[3].location = PIN3_X;

anaa

main.

(€ |

dard debuggers (see Fig. 2). The user can see program input/out- [T ——————————————————
put, debugger input/output, source code, assembly instructions, . :
register sets, and even the state of signals being handled by the Fig. 1. Entering program debugger commands.

_)] SoftBench — Progra Program Debugger — Assembly Instructions

File Breakpoints Execution Trace Sho
78: Dx000003fa _shuffle+0078 mov.1l

Context: hpfemrc: /users/cagan/Project 1 0x00B003fe _shuffle+0074 subq.1
o)) 8x80888488 _shuff1e+8676
PC: main File: main.c Line: 38 Depth: 8 Ax000B6402 _shuffle+0878
O:[toptevel 8x00888486 _shuffle+BB7c
2 Bx0006040a _shuffle+0888
Bx0000840e _shuffle+0084
0x0EEEB414 _shuffle+0688a
main(argc, argv) : BxB0008418 _shuffle+B08e
int argc; Bx0000041a _shuffle+0090

char vargv[]; 8xB008041c _main

Bx00008422 _main +8086
Widget toplevel, bboard, audi 0x00000426 _main +0B0a
int n = 8; : DxBO0BB438 _main +0014
: Dx0B0OBB434 _main +0618
Pin[1].ring count = COUNT; 0x0000643a _main +001e
Pin[Z]. ring count = B; 0x0080043c _main +00208
pin[3].ring count = 8; : BxB00OB43e _main +8822
0x00BE0444 _main +0028
pin[1].1location = PIN1_X; : Bx00000446 _main +002a

Bx LR

[« m————————— . BxPE0OE

DDONRPOD

File: hpfcemrc: /users/cagan/Project/Towe

| e@ RO

el

B~

T
y[Program Debugger — MCB80xx Registers

8x0600)
b Handy :S"P o 900004 | psw:

main.c: main: 37: pin[1].ring count o 42: Bx0000§ s
& 0x00004 pc: 0x000E043e

breakpoint at Bx43e 43: Bx00004 A registers: D registers:

0x00004

main.c: main: 38: pin[2].ring count A
3 45: OxB000§

0xB009%adac il 0x00000004

Oxffeffc58 Ox00000000

R e R

User Program 1/0 Steppingby: @ Staten

0
1
2 Oxffefdaat BxBEEOOEO1T
3 Bxffeffbdc Bx00PEEEE3
4 Bx0805868c BxBEOHEEHE
Tracing: [Assembly 5 0xBEO5860c BxBOOBOEB1T

lframe) Bxffeffcis Ex08888081

7(stack) Oxffeffc38 0x00000021

I Fig. 2. Multiple views of program
execution in the program de-
bugger.

JUNE 1990 HEWLETT-PACKARD JOURNAL 55

debugger—all at the same time if desired. Because these views
are in separate windows, they are not constrained by the same
space resources as in conventional, terminal-oriented HP-UX
debuggers.

One of the most useful features is separation of the I/O streams
for the HP-UX debugger and the program being debugged into
separate window panes. This allows the user to see (and re-
member) what the program is doing without sorting through con-
fusing debugger commands, prompts, and printouts. Each of
these views is scrollable and editable, allowing the user to review
and repeat previous entries.

Added Value

Since the program debugger is implemented using the HP
SoftBench distributed support mechanisms, users can debug
programs on other machines and with distributed source files
without doing any extra work. The program debugger takes care
of starting the HP-UX debugger on the correct machine (the one
hosting the executable file) and establishes all the necessary
interprocess communication. While this is not a substitute for
nonintrusive distributed debugging, it does satisfy the distributed
debugging needs of many users.

For applications with signal handlers that must be debugged,
the program debugger has a special window to help the user
monitor signals that are received, handle each signal specially,
and send specific signals to the application. All of this can be
done without going to a terminal window and without looking up
process ID numbers and signal numbers.

Program debugger users rarely need to know about process
ID numbers, even when sending signals to their applications or
when adopting already running processes. The task of remem-

made, it is important to be able to assess the impact of the
change. For example, if a function needs an additional
argument, all calls to the function must be located and
modified. If a function’s return value must be changed, all
locations in the project that use this function’s return value
must be identified and changed. The static analyzer facili-
tates these activities.

Program Maintenance

Program maintenance is similar to program test. Software
requirements change over time, and modifications may be
needed to the program for reasons other than defects in
the program. The programmers who maintain applications
are often not the original developers and may need assis-
tance to understand the design and implementation of the
program so that they can make the necessary modifications
effectively. These factors make the ability to understand
the application crucial. In fact, much of what software
maintenance programmers do is work on understanding
the applications they maintain and assess the impact of
proposed changes. While the changes themselves are often
small, identifying the source of the problem, designing an
appropriate change, and assessing the impact of the pro-
posed change is often very difficult and time-consuming.

The static analyzer and the program debugger are the
primary tools for helping the maintainer understand the
application, identify the problem, and assess the impact
of proposed changes. The program editor and the program
builder are used to reconstruct the modified application
and the static analyzer and the program debugger are used

56 HEWLETT-PACKARD JOURNAL JUNE 1990

bering the ID numbers when a process is forked or of looking
up the process ID number (with /bin/ps) using the program’s name
is handled automatically.

The standard HP-UX symbolic debuggers give minimal sup-
port for monitoring the value of program variables. It is possible
to set up assertions that show the value after each instruction
executed (slowing execution incredibly), or to set up breakpoints
to show the value at specific points in the program, but great
imagination (and tedium) are required to do much more. The HP
SoftBench program debugger allows the user to specify a vari-
able to be traced and then uses a rather involved set of break-
points and assertions to implement a primitive but often useful
variable tracing facility.

Automated Tool Use

The HP SoftBench tool integration architecture allows tools to
communicate with each other by means of request and notifica-
tion messages. While the current HP SoftBench tools only docu-
ment a limited set of requests, it is possible for tools such as the
program debugger to be controlled entirely by a program rather
than a person. For example, tool builders can use the HP Encap-
sulator (see article, page 59) to construct higher-level tools that
issue requests to the static analyzer and the program debugger.
These higher-level tools can monitor program data structure re-
ferences or modifications, perform branch flow analysis, monitor
performance, or handle dozens of other useful operations.

Robert A. Morain

Robert B. Heckendorn

Software Development Engineers
Software Engineering Systems Division

to test the changes. If the modifications to the application
caused a change in the module dependencies (for example,
if a new module was added), then the program builder will
update its data base of dependencies (the makefile).

In addition to locating specific conditions in the program,
the static analyzer and the program debugger help the pro-
gram maintainer work backwards from the symptom to the
cause. For example, if the user of an application reports a
problem when a specific error message is displayed, the
program maintainer can ask the static analyzer to show the
locations in the program where the message is displayed.
The program debugger can then be instructed to monitor
those points as the maintainer reconstructs the scenario
that led to the error message. Once the problem situation
is duplicated, the maintainer uses the program debugger
to examine the state of the application and determine the
function call sequence and data structure state that caused
the defect situation.

Conclusion

We have described how the HP SoftBench environment
is used to support team file management, team communi-
cation, program construction, program test, and program
maintenance. The goal was to illustrate not only the fea-
tures of each of the HP SoftBench software development
tools, but to demonstrate the synergy that can be achieved
by letting the tools collaborate to provide a task-oriented
software development environment.

With the HP Encapsulator product described in the arti-

cle on page 59, common development activities involving
(continued on page 58)

Integrated Help

The HP SoftBench help facility (see Fig. 1) is independent of
the tools for which it provides help. For efficiency, the help appli-
cation is combined with the tool manager.

Each tool contains a help pull-down menu containing item Help
and Application Help entries. When a user asks for item Help, the
mouse sprite changes into a question mark. The user can then
point at a region of any HP SoftBench application and help text
describing that part of the tool will appear in the help window.

Each piece of text is displayed with a list of related topics.
Selecting the related topic causes the text for that topic to appear.
The cross references can point to topics inside another tool.

The normal HP SoftBench intertool communication mecha-
nisms are used to drive the help system. When a user selects
Application Help, a request is sent to the help system to display
the information. The tool is not aware of its own or any other tool's
help text.

The help data base and communication between the other HP
SoftBench tools and the help tool (the Item Help lookup mecha-
nism) require no cooperation from any application as long as it
is implemented with the HP widgets and the X toolkit (which
stores the needed properties on the widget windows). The help
menu items do require minimal cooperation from the application,
of course. Ideally, dependence on the HP widgets would not
have been needed, but the information provided by applications
complying with the Inter-Client Communication Conventions
Manual (see box, page 23) or by the X toolkit (Xt Intrinsics) is
not sufficient for this level of detail.

SoftBench — Static Analyzer

File Edit Buffer Show History Settings [Help

Context: hpfcmrc: /users/cagan/Project Tow) Item Help

():| toplevel 2) Application Help

Query: References

Results: 5 Scopin l]u-;t Nane.

Interface between Tools and the Help System

HP SoftBench tools communicate with the help system via the
X protocol and the HP SoftBench broadcast message server.
Requests for Item Help and Application Help are sent as request
messages to the help tool. A request for Application Help includes
the application class of the application, and a request for item
Help causes the help tool to grab the pointer (changing the pointer
to a question mark temporarily). For Item Help, the help tool has
to figure out which widget was selected. This is done without the
assistance of the specific application as long as the application
is built using HP widgets. Each widget window stores a property
XW_CLASS, which contains the widget name and the class of the
widget window. The top-level window also stores the WM_CLASS
property containing the name and class of the application (as
defined by the Inter-Client Communication Conventions Manual).
When the user selects a window, the help tool determines the
smallest enclosing window containing the pointer and then
traverses the window hierarchy outward to determine the widget
namelist and classlist used in a resource specification in the X
resource manager. It looks these up in the help data base to
locate the help text associated with the help window. This same
mechanism is used by the automated test facilities described in
“Architectural Support for Automated Testing” on page 37.

John R. Diamant
Software Development Engineer
Software Engineering Systems Division

main.c (34), main: Widget toplevel, bboard, ||=]

SoftBench — Help [v l_l

main.c (49), main: toplevel = XtInitialize(d File Help

.c (53), bboard = XmCreateBulletin

.c (76), XtRealizeWidget(toplevel Kcvwovd()=|scop=.

 [Cookup|

Related Topics:
...Scoping

File: hpfcmrc: /users/cagan/Project/Tower/main.c

audio_value = True;]
/* Initialize the Intrinsics x/
toplevel = XtInitialize(argv[®], "Tower",

display = XtDisplay ((233 H [1Scoping

A

/% Create a bulletin board */
bboard = XmCreateBulletinBoard(toplevel, '
XtManageChild(bboard);

The scoping button allows you to select whether
scoping should be used on a "Show" query.

When a program identifier is selected from the
Edit Area or the) Results Area, it is
automatically put into the "():" input box and
the scoping toggle is set. The scoping toggle
indicates that the identifier’s location
(filename and line number) within the source
file is used to return results on the exact

/* Demo for Gayla x/

audio_toggle = XmCreateToggleButton(bboar:
XtAddEventHandler (audio_toggle, ButtonPre
XmToggleButtonSetState (audio_toggle, True

Fig.1. HP SoftBenchon-line help. |

JUNE 1990 HEWLETT-PACKARD JOURNAL 57

the HP SoftBench tools can be automated.

Acknowledgments

The HP SoftBench software development tools were de-
signed and built by Martin Cagan, John Dutton, Jorge
Gautier, Robert Heckendorn, Caroline Koff, Bob Morain,
John Repko, Nancy Steffens, Gary Thunquest, Anthony
Walker, Jim Whalen, and Jim Wichelman. The HP
SoftBench team is grateful to the HP California Language
Laboratory for providing the underlying support for static
analysis, and to the HP Colorado Language Laboratory for
their help with the underlying debugger support.

58 HEWLETT-PACKARD JOURNAL JUNE 1990

HP Encapsulator: Bridging the Generation
Gap

By means of the Encapsulator description language, a user
can integrate tools into the HP SoftBench environment
without modifying their source code, and can tailor the HP
SoftBench environment to support a particular software

development process.

by Brian D. Fromme

?5 process specification facility of the HP SoftBench

¥ environment. It allows an HP SoftBench user to pro-
mote existing tools to be fully consistent, integrated HP
SoftBench tools and to tailor the HP SoftBench environ-
ment to support a specific software development process.
The HP Encapsulator provides customization and exten-
sion capabilities for automating organization, team, and
personal software development processes using event trig-
gers.

s HE HP ENCAPSULATOR is the tool integration and

The HP Encapsulator can handle a range of existing ap-
plications. It is designed to handle programs written in the
style of programs for the UNIX* operating system, that is,
programs that have a command-line interface to their func-
tionality. Examples of this sort of program are nearly all
UNIX tools (tar, prof, adb), customer-developed scripts and
utility programs, and many third-party tools (e.g., McCabe’s

*UNIX is a registered trademark of AT&T in the U.S.A. and other countries.

ACT, Verilog’s Logiscope, Softool’s CCC, and SMDS’s Aide-
de-Camp).

From the user’s point of view, an encapsulated tool looks
and behaves just as the core HP SoftBench tools do. In fact,
one of the core HP SoftBench tools is actually an encapsu-
lation—the HP SoftBench mail tool is an encapsulation of
the HP-UX tool mailx. This encapsulation will be described
in more detail later in this article.

The HP Encapsulator can be used either to add a new
tool to the HP SoftBench environment or to replace an
existing HP SoftBench tool or another encapsulated tool.
The HP SoftBench architecture is designed to facilitate this
substitution of tools.

Tool Encapsulation Overview

Encapsulating a tool means integrating the tool into the
HP SoftBench tool integration architecture. The HP Encap-
sulator is the liaison between the existing tool and the rest
of the HP SoftBench environment. It plays the role of trans-
lator of commands, actions, and presentation.

14
wa Mailx

5 /users/cagand> mailx
mailx Revision: 64.64 Date: 89/07/24 89:21:08
"/usr/mail/cagan": 6 messages 2 unread

1 claire_phillips%@7@hpc668.hpl.hp.com Tue Sep 26 87:39
isit Report

2 cagan@hpfcjrd.sde.hp.com Tue Oct 3 17:20
tegr

3 carol_siacotos%a28hp19608 Fri Oct 6 22:11

33/1843 Re: Another try ...
>U 5 walicki@hpfclk.sde.hp.com Sun Oct 29 12:28 28/990
U 6 lee_huffman¥%®B@hp4B28 Sun Oct 29 14:55 1087/4131

21

Type ? for help.

72/2990 Exposing SoftBench In

48/1337 MAP
4 @hpfclp.sde.hp.com,@nirsa.inria.fr:root@columbo.inria.fr Wed Oct 11 B2:55

TEST RESULTS
Yideo Thoughts

S e

122/5487 Verilog V

Fig. 1. Original user interface of
v the HP-UX terminal-based mail

i §

L tool mailx.

JUNE 1990 HEWLETT-PACKARD JOURNAL 59

Integrating a tool using the HP Encapsulator provides
the following benefits:

@ Provides alink to the HP SoftBench event trigger facility.
® Provides an HP SoftBench-compatible, OSF/Motif-style

user interface (see article, page 6).

m Uses HP SoftBench distributed execution to support re-
mote subprocess execution.

m Uses the HP SoftBench network-wide communication
facility.

An important aspect of the HP Encapsulator is that no
source code modifications are necessary to the tool being
encapsulated. This allows customers to integrate pur-
chased tools for which no source code is available.

There are also some limitations of encapsulation that
should be understood before an encapsulation program is
attempted. The HP Encapsulator only supports encapsula-
tion of tools written in the UNIX command-line interface
model. Tools that have highly interactive or graphical user
interfaces are often not good candidates for encapsulation
because the HP Encapsulator cannot understand what the
tool is doing or has done. User interface potential is also
limited by output from the encapsulated tool. If the tool
does not provide error messages or some sort of output
stream (typically stdout or stderr), the HP Encapsulator is
constrained in its ability to interpret what the tool has
done. Another limitation is that event granularity for trig-
gers and notifications—that is, the level of detail at which
events can be specified—is only as fine as can be initiated
and recognized from the encapsulated tool. To achieve the
same level of event granularity as the other HP SoftBench
tools, each atomic operation needs a unique command-line

SoftBench — Mail

interface.

The HP SoftBench Mail Encapsulation

Before the design details of the HP Encapsulator are de-
scribed, a sophisticated encapsulation will be presented to
illustrate the concepts that have been presented so far.

The encapsulation to be described is the HP SoftBench
mail tool. This tool is provided with the HP SoftBench tool
set, and most users are not aware that it is an encapsulation
rather than a native tool like the other HP SoftBench tools.
The HP SoftBench mail tool is actually an encapsulation
of the HP-UX mailx program. The mailx program was not
modified in any way.

Fig. 1 shows the original terminal-based interface to mailx,
and Fig. 2 shows the encapsulation. Before encapsulating,
mailx was not related or linked to the other HP SoftBench
tools in any way. The encapsulated version, on the other
hand, has useful links to the other HP SoftBench tools. For
example, the user can configure HP SoftBench mail to send
a mail message to the project team whenever a project build
has completed successfully. With the HP Encapsulator,
customers can customize the specific conditions and ac-
tions to meet their particular needs.

Other Encapsulations

Many other tools have also been encapsulated. Fig. 3
shows the encapsulation of the HP-UX performance profil-
ing tool prof(1). Fig. 4 shows an experimental encapsulation
of the Analysis of Complexity Tool for metrics collection
and structured testing support from McCabe and As-
sociates. Fig. 5 shows a trigger panel with which the user

Wail Folder Message Settings Help

letters:

15302
15:02

13/390
13/390

com Wed Nov
com Wed Nov
com Wed Nov

steve@hpfoo.
james@hpgvd.
janet@hpbar.

sde.hp.
sde.hp.
sde. hp.

Mo —
N . N

File callbacks.c
Build Successful
Release Party

chris@hpcnw. sde.hp.com Wed Nov 15:82 15/414 Project Milestones
v
4 (3
g i Delete I { Reply to Author... | i Print I i Compose... I
E] { Refile I ! Reply to All... | g Forward... I { List Folders... l

Message—-Id: <9B802122205.AA04370@hpbar.sde.hp.com>
To: colin@hplsf.sde.hp.com

Subject: Release Party

Status: RO

There will be a party to celebrate the success of
the Tower project on Jan 18, 1998. Hope
you can all be there:

Cuisine Cuisine
8:00pm
January 18,
Black Tie

Place:
Time:
Date:

Attire:

1990

RSYP Requested.

Janet

Fig. 2. User interface of the HP

L e O T 1 S S S Y B SN S SRRt 3
it 5

SoftBench mail tool, an encapsu-
lation of mailx.

60 HEWLETT-PACKARD JOURNAL JUNE 1990

T T
—rl SoftBench - Profile l" |
File Performance Program Function Settings Help
Context: hpfcmrc:/users/cagan/Encap/factor
Function Name %Time Seconds Cumsecs #Calls Msec/call
_doprnt 160.8 8.82 8.82 18 2.68 a
sum factors 8.8 8.80 8.02 1 6.60
nun_div 6.8 ©.08 0.02 1 8.008
euler_ phi 8.8 B8.08 0.82 1 6.00
factorstoa 8.8 ©.88 8.02 1 6.00
itoa 8.8 B8.88 0.082 5 0.60
jnain 6.6 06.60 6.82 1 8. 00|
getnum 8.8 ©6.60 8.02 2 6.00
monitor 6.8 ©6.08 8.02 2 8.00
creat 8.8 0.80 0.82 1 0.00
profil 8.0 0.008 8.82 2 8.68
puts 8.0 8.06 0.02 1 6.00
printf 8.8 8.0 B8.02 9 08.00
Wi
| ————— >} | |
T 1

Fig. 3. Encapsulation of the HP-UX performance profiling
tool prof.

can configure the relationship between the McCabe testing
tools and the rest of the development environment.
Prototype encapsulations have been written for config-
uration management, documentation, testing tools, and
language-based environments such as Lisp and Ada.

Encapsulator Description Language

The Encapsulator description language (EDL) is a
specification language designed to simplify the task of de-
scribing an encapsulation. The primary reason for encap-
sulating a tool into the HP SoftBench environment is to
allow that tool to make use of the HP SoftBench architec-
ture, primarily the broadcast message server and aspects
of the distributed environment. Therefore, these architec-
tural features have been made accessible in EDL.

From the perspective of the encapsulation system, there
are two main components in an encapsulation: interfaces
and actions. Interfaces are connectors to the outside world,
such as the window system or the HP SoftBench message
system. Actions are the steps to be taken when certain

f T
=] SoftBench - McCabe =15

File Program Structure Tests Settings Help

Context: hpfcmrc:/users/cagan/Src/Robot

Program: I:& rm

Node Module v(G) ev(G)
1 main 8 1
?% 2 hil_robot 19 1
Crcamoes 3 open_robot_window 2 1
4 draw segment 6 1
5 get robot 31 4)
= 6 scale3d 1 1
7 make_normals 4 1
8 find normals 16 1
38 rotate3d 3 1
42 draw_robot 1 1
43 open_display 2 1
52 translate3d 1 1
69 rotate_robot 4 1

Fig. 4. Encapsulation of the Analysis of Complexity Tool
(ACT) from McCabe and Associates.

conditions are met on an interface. EDL defines a set of
interfaces and data types thatlink conditions in an interface
to actions that the user provides to respond to that condi-
tion. The actions are EDL code to be executed.

EDL has conventional programming language constructs
such as data types, variables, operators, flow-of-control
clauses, and user-defined functions. EDL also contains a
rich set of built-in functions, which provide a programmat-
ic interface into the HP SoftBench architecture as well as
the underlying window system. The EDL data types are
string, integer, Boolean, attribute, event, and object. There
are C-like operators that can be used to form expressions.
There are two flow-of-control clauses: if and while. User-de-
fined functions can be used to group and define parameters
for EDL statements, but are most useful as actions for re-
sponding to conditions.

A programmer develops EDL code much as one would
develop code in other specification-language-based envi-
ronments, that is, by first entering the EDL source text into
a file, then invoking the HP Encapsulator over that file.
See page 67 for a description of how the HP Encapsulator
executes the EDL code.

Interfaces

Four interfaces are defined in the Encapsulator descrip-
tion language. They are the user, message, application, and
system interfaces. The user interface is the window system,
the message interface is the HP SoftBench broadcast mes-
sage server, the application interface is the encapsulated
program or subprocess, and the system interface is the
operating system. Conditions on an interface are called
events.

An event is a data type in EDL. Events have three com-
ponents, a type, a pattern, and an action. The type defines
the interface to which an event corresponds. The type
specifier is the identifier or the name of the interface. Thus
the user interface has events of type user. The pattern is
the condition to be met on an interface. A pattern is a string
that identifies either the name or the form of a condition.
For example, application events use the HP-UX regular

—>] SoftBench - McCabe

Automatic Parsina: <" OnFile Check In
9 OnBuild
{* OnRelease Update

Auto Show Flow Graoh: @ On Static "Show Calls*

@ OnFile Check In
< OnBuild
{* OnRelease Update

Automatic Test Path Reoortina:

Send to: rqa: l

<" OnFile Check In
<* OnBuild
Send to: I cagan, ga, mgmt] @ OnRelease Update

Minimum v(G):
i i

I I

Automatic Metrics Reportina:

Minimum

Fig. 5. Triggers for the encapsulation of McCabe’s ACT.

JUNE 1990 HEWLETT-PACKARD JOURNAL 61

expression pattern matching facility, so the pattern is a
string that describes a regular expression to that pattern
matcher.

An example should help clarify how an event is declared.
This event will occur when the encapsulated program mailx
finds that there is no new mail available.

First, we declare an event variable.

event mailx_event;

Now we assign that variable a newly created application
event. The event corresponds to the condition that mailx
has written the text “No mail for Fromme” to stdout (its
standard output file).

mailx__event = make_event(Application, “"No mail for (.*)$0\n”,
no_mail($0));

Finally, we add this event into the list of active events.
add_event(mailx_event);

Events can be activated and deactivated via built-in func-
tions in EDL. This allows the user to control which condi-
tions can be met at a given time. When an event is defined
in the user interface, that event must correspond to a par-
ticular object in the window system. EDL objects will be
explained in more detail later.

Actions

Actions are the steps to be taken when certain conditions
are met on an interface. In the example above, the action
to be taken when the regular expression is matched is a
call to the function no_mail(). Actions can be arbitrary state-
ments of EDL code. In use, however, actions are typically
calls to functions that are defined by the user. This makes
the declaration of an event more readable and more easily
changed or configured.

For example, we will define the function no_mail(), which
is to be called when the HP Encapsulator sees the no-mail
pattern from mailx. Note that the argument passed to the
no_mail() function from the event is $0. This is the EDL
syntax for the special string variables that retrieve portions
of a regular expression. In this case, $0 will be the name
of the user running the SoftBench mail tool.

/*This function is called when mailx tells us there is no new mail */
function no_mail(user)
string user;

/* Let the user know that there is no new mail in the mailbox */
clear(headers); /* Clear mail headers list */

freeze_buttons(); /* Make the buttons insensitive */

/* This is a local string variable that holds the dialog prompt */
string info = print_to_string(“User %s has no new mail”, user);

/* Now pop up the dialog box to inform the user */
error(Information, info);

/* No need to return data from this function */

62 HEWLETT-PACKARD JOURNAL JUNE 1990

Notice that the action function calls other functions,
some of which are built-in EDL functions and some of
which are user-defined functions. This example shows how
we have taken a condition from the terminal based mailx
application and turned it into an information dialog box
via a call to the built-in EDL function error().

User Interface

The user interface is the window environment in which
a user can interact with the encapsulation. Components of
the user interface are referred to as objects. An object is
any visual device that conveys information between the
user and the program—examples are labels, buttons,
menus, and editable fields. An object is also a data type in
EDL. Objects are EDL representations of physical entities
on the screen. There are two types of EDL objects: manager
and primitive. Manager objects can control other objects
while primitive objects cannot. The set of EDL manager
objects includes Toplevel, Transient, Pulldown, and Pane, while
the set of EDL primitive objects includes MenuButton,
MenuSeparator, Command, Label, Edit, List, Toggle, and Image.

To define a user interface in EDL, one specifies the hierar-
chy of manager and primitive objects that compose each
window as EDL statements. The following example will
create a window with two objects, a Label object and an Edit
object.

First, we declare the window and its first pane, both of
which are manager objects.

object mail_window = make_manager(NULL, Toplevel,
“MailWindow”);
object pane = make_manager(mail_window, Pane, “firstPane”);

Now we declare the components of the pane, both of which
are primitive objects.

object target_label = make_object(pane, “target”, Label,
“Target: ”);

object target_value = make_object(pane, “value”, Edit,
get_context_file());

In this example, the elements of a Toplevel window have
been described. Manager objects are declared with the
built-in EDL function make_manager(), while primitive ob-
jects are declared with the built-in EDL function make_ob-
ject(). The parameters of these built-in functions describe
information about how to create such an object when the
time comes, such as the parent (or manager) of this object,
the name, the type, and the label (or initial value to be
displayed within the object). Objects described in this way
are not created until their entire window is needed. This
isachieved via a call to the built-in EDL function display().

To take an action in the user interface, the user often
presses the left mouse key (mapped to the Select action)
while the mouse cursor is over the object that describes
the action. To define the action in EDL, the programmer
must associate a user event with a user interface object.
Thus, each user interface object is associated with distinct
events or actions. Several objects can be associated with a
single event. The following example creates three Toggle
buttons and two events. A Toggle button is a user interface

object that represents either an on or an off state. The two
events are used to determine when the user turns the button
on and off.

First, we create two events that trigger actions for any of
the three Toggle buttons.

event toggle_on = make_event(User, “Select”, toggle(True));
event toggle_off = make_event(User, “Release”, toggle(False));

Then we declare three Toggle button objects.
object a, b, c;
Notice that we pass both events to each of these objects.

a = make_object(pane, “a”, Toggle, “Me”, NULL, toggle_on,

toggle_off);

b = make_object(pane, “b”, Toggle, “Myself”, NULL, toggle_on,
toggle_off);

¢ = make_object(pane, “c”, Toggle, “I”’, NULL, toggle_on,
toggle_off);

This function handles both the on and the off states for
these Toggle buttons.

function toggle(on)
boolean on;

/* Get the object with which this event is associated */
object this_button = self();

/* If we selected one of these buttons, then release the

* others. This makes the buttons exclusive (only one can
* be set at any given time). */

if (on) {

/* Send the “Release” event to all buttons but this one */
if (this_button != a) send_event(a, toggle_off);
if (this_button != b) send_event(b, toggle_off);
if (this_button != c) send_event(c, toggle_off);
}
}

This example defines a window object and its action.

Another aspect of the user interface is the appearance of
an object, such as width, height, color, and character font.
In EDL, these characteristics of an object are referred to as
attributes. An attribute is a data type in EDL. There are
two attribute operators: merge and associate. The merge
operator is used to combine a single attribute into a set of
attributes called an attribute list. The associate operator is
used to combine a value with a named attribute. As can
be seen in the following example, the WIDTH attribute allows
an associated value, while the SINGLELINE attribute does
not. The example illustrates the creation of a single-line,
labeled, editable field of a certain width.

object label, edit;
attribute attr;

The following attribute merges a font description with a
specified width and also tells the Label object to put the

text as far left as possible.

attr = FONT : “hp8x16” | WIDTH : 100 | LEFTJUSTIFIED;
label = make_object(pane, “dirLabel”, Label, “Directory:”,
attr);

The following attribute merges a font description with a
specified width and also tells the Edit object to restrict its
view to a single line.

attr = FONT : “hp8x16” | WIDTH : 300 | SINGLELINE;
edit = make_object(pane, “dirValue”, Edit,
get_context_directory(), attr);

Attributes are used to specify the appearance and be-
havior of user interface objects. The example above shows
their static use, that is, to specify the object’s behavior
when first displayed. Attributes can be used dynamically
through the EDL built-in function add_attribute(). This allows
the appearance of an object to change during execution of
the encapsulation.

Message Interface

The message interface is the programmatic access to a
tool’s functionality. This interface is the connection to the
broadcast message server and allows tools to communicate
with one another, just as a user would interact with a tool
through the user interface. The messages that a tool can
emit and receive define the tool’s message protocol. The
HP SoftBench tools have a predefined message protocol.
When a user encapsulates a tool, a new message protocol
is defined. This protocol is called the tool class.

To define a new tool class, one must decide what func-
tionality of the new tool should be accessible to other tools.
Most often this is the same functionality that is available
to the user via the user interface. Next, the developer must
decide how other tools are to be passed information specific
to each tool function. Typically, information that the user
interface receives by bringing up a dialog box can be re-
ceived in the message interface as the data fields of a mes-
sage.

There are several requirements that should be met for a
new tool class to become a “good citizen”” HP SoftBench
tool. A notification message must be announced whenever
the tool successfully performs a function. A failure message
must be announced whenever the tool attempts to perform
a function, but does not successfully complete it. A request
message must be accepted for each function that the tool
is able to perform.

The message model allows tools to request other tools
to attempt to perform functions. Furthermore, because tools
send out notification or failure messages after attempting
to perform a function, a tool can determine the results of
such arequest. Thus, tool interaction can be either synchro-
nous or asynchronous. For example, a tool may request
that an edit of a particular file be started, but may not care
whether the editor can actually perform the task. On the
other hand, if a tool requests that a file be checked out of
the version control system, it will need to know whether
that function can be performed before continuing with the
current operation.

JUNE 1990 HEWLETT-PACKARD JOURNAL 63

To facilitate handling arbitrary requests, the broadcast
message server defines a simple pattern matching facility.
This facility is accessible through the EDL built-in function
make_message_pattern(). When message events are defined,
the message patterns will be passed to the broadcast mes-
sage server. These describe the forms of messages to be
forwarded to the HP Encapsulator.

The following example describes the message interface
for the simple tool class EXAMPLE.

/* Define the tool class */
tool_class("EXAMPLE");

These are variables used in the message interface.

string pattern;
event plan, estimate;

This describes the PLAN request message.

pattern = make_message_pattern(Request, NULL, “PLAN");
plan = make_event(Message, pattern, plan_request());

This describes the ESTIMATE request message.

pattern = make_message_pattern(Request, NULL, “ESTIMATE");
estimate = make_event(Message, pattern, estimate_request());

Now we activate these events.

add_event(plan);
add_event(estimate);

These are the functions for the PLAN and ESTIMATE mes-
sages. The PLAN message takes two data parameters: the
name and the engineer-months. The ESTIMATE message
takes no data parameters.

function plan_request()

{
string name, months;
/* Extract and check the data parameters */
name = message_data(1);
months = message_data(2);
/* If these aren’t passed, then its an error */
if (Iname || Imonth) protocol_error();
else
/* Perform the PLAN request */
if (plan(name, month))
/* Succeeded */
send_message(Notify, NULL, “PLAN”, name, months);
else
/* Failed */
send_message(Failure, NULL, “PLAN”, name, months);
}

function estimate_request()

{

64 HEWLETT-PACKARD JOURNAL JUNE 1990

/* Perform the ESTIMATE request */
if (estimate())

/* Succeeded */

send_message(Notify, NULL, “ESTIMATE");
else

/* Failed */

send_message(Failure, NULL, “ESTIMATE”);

In this example, we have declared a tool class EXAMPLE
and registered two patterns with the broadcast message
server, each of which has a function to handle the request
when the corresponding message is forwarded to the HP
Encapsulator. The functions check that each message has
the appropriate data and call other functions to attempt
the requested action. If the actions succeed, then a notifi-
cation message is sent to the broadcast message server.
Otherwise, a failure message is sent.

By knowing the message protocols of a tool, one can use
the HP Encapsulator to:

Create atool that interacts with other HP SoftBench tools.

Create a tool that drives other HP SoftBench tools.

Create a tool that replaces an existing tool (substitution).

Create agents. Agents are tools that orchestrate other

tools to perform tasks.

Tool Triggers

A trigger is a cause-effect relationship between tools. In
the HP SoftBench environment, a trigger occurs when a
notification or failure message is sent from one tool and
one or more other tools respond to that notification by
taking some new action. For example, when a file is saved
from any tool, the HP SoftBench development manager
tool will update its directory listing, if needed. This is a
predefined trigger in the HP SoftBench environment.

The HP Encapsulator allows the user to define two types
of triggers; those that take action in a tool and those that
request some third tool to take an action. The HP SoftBench
development manager example above is a trigger that takes
action in a tool. The following code is an example of a
trigger that requests a third tool to take an action. It listens
for a notification message from the development manager
and asks the HP SoftBench program builder tool to attempt
a build.

When we see a VERSION-UPDATE-DIR message notification,
send out a BUILD-TARGET request.

event trigger;
string pattern;

This pattern and event describe the message to be seen.

pattern = make_message_pattern(Notify, “DM”,
“VERSION-UPDATE-DIR");

trigger = make_event(Message, pattern, request_build());

add_event(trigger);

This function requests that a build be started when an
update of the version directory is done in the development
manager.

HP Encapsulator CASE Case Study

Frederick Brooks wrote: “Plan to throw one away; you will,
anyhow.” The day before the U.S.A. announcement and dem-
onstration of the HP SoftBench environment, we threw away the
mail tool. Work began immediately to rewrite it almost completely,
using ideas we had learned from the previous effort. This time,
instead of writing an entirely new mail program, our approach
was to use the HP Encapsulator to encapsulate the HP-UX mail
program mailx.

Why Another Mailer?
There were several reasons for writing yet another mail pro-
gram:
Provide a bridge from HP SoftBench messages to mail mes-
sages. When a particular HP SoftBench message is sent, a
software developer might want to send mail to notify the team,
the developer, or others. This would be especially true for
processes that run unattended or at night.
Improve the user interface. Most mailers that run under the X
Window System have a human interface best described as
nonideal. Some confuse new users with clutter, some require
a lot of customization, and some are hard to maintain in a
changing environment. HP SoftBench mail tries to provide a
better user interface.
Teach the HP Encapsulator language by a nontrivial example.
We wanted future developers to learn advanced techniques
by studying the code and its comments.
Fine-tune the HP Encapsulator. The new technology of the HP
Encapsulator needed to be used to get it ready for commercial
use.
Improve the usefulness of the HP SoftBench environment.
Studies show that technical users buy a computer to solve
important or costly problems like software development, not

function request_build()
{
/* convert a wildcard for directory to a nil */
string mfile = message._file();
if (string_compare(mfile, “*”’)) mfile = “-”; /* Message
* server nil */

/* Get the current context */
host = get_context_host();
dir = get_context_directory();

/* Now set the context from the incoming message */
set_context(message_host(), message_directory(), mfile);

/* Send the request to the BUILD tool class */
send_message(Request, “BUILD”, “BUILD-TARGET”, “-”, *-", “-");
}

The ability to define triggers allows the user to customize
the HP SoftBench environment to meet process-specific
needs. The following section describes the benefits of user-
definable triggers.

for office automation tasks like mail. Nevertheless, they expect
the manufacturer to provide a mail system.

Using the Encapsulator

The Encapsulator description language (EDL) is a new lan-
guage. A new language allows one to sail the seas of new higher-
level ideas, explore uncharted waters of new constructs, and
breeze past the rocks of low-level details so prominent in such
libraries as the X toolkit. However, new languages usually include
a new paradigm—a new way of thinking about the programming
problem. This is certainly true for EDL.

Encapsulating a complex tool like the HP-UX mailx application
has its challenges, too. As we progressed on the rewrite, we
learned more about mailx that caused us to modify our design.
For instance, the code to manage folders was rewritten twice as
we learned subtle interactions in the way that mailx handles fold-
ers. Even though we did have access to the source files for mailx,
we looked at them only once—to discover that we couldn't find
the answer in the code! It turned out to be much easier simply
to set up conditions, run mailx in a terminal window, and observe
its behavior. On the other hand, encapsulating an existing pro-
gram is code reuse at its best. Someone else had already solved
hard problems of mail delivery, folder management, alias crea-
tion, message presentation, and so forth. To paraphrase Isaac
Newton, HP SoftBench mail sees farther than its predecessors
because it is standing on the shoulders of the giants that already
provided part of the solution.

Bob Desinger
Software Development Engineer
Software Engineering Systems Division

One of the promising new areas in software engineering
environment research has to do with providing automated
support for the user’s software development process. The
HP Encapsulator is one of the first products to provide a
language for describing local organizational, team, and per-
sonal processes. We refer to an EDL program that supports
a user’s development process as a process specification,
and we refer to this type of environmental support as pro-
cess integration.

Process Specifications

While not all development processes are amenable to
being described with EDL process specifications, most can
have at least some aspects automated. In particular, activ-
ities and tasks that are essentially event-driven are prime
candidates for automated support.

The author of an EDL process specification tells the HP
SoftBench environment what to do when specific events
occur. There are two keys to the successful implementation
of EDL process specifications. First, the notification mes-
sage events must be announced so that the proper actions
can be triggered by the EDL process specification. All HP
SoftBench tools and all properly encapsulated tools issue

JUNE 1990 HEWLETT-PACKARD JOURNAL 65

these notification messages. Second, when a trigger in an
EDL process specification occurs, the resulting action
needs to be able to control other tools in the environment.
All HP SoftBench tools and all properly encapsulated tools
provide this by means of the message-based interface to
their functionality.

As an example of an EDL process specification, the fol-
lowing team process could be automated:
® Whenever a team member checks a file into the master

source file repository (directly or indirectly through the

development manager or a substituted configuration
management system supporting the DM versioning com-
mand class), with a state having the value Release, cause
complexity metrics to be calculated.

®m If the complexity metrics for the file are not acceptable
as defined by the team, create a metrics report detailing
the unacceptable functions, and mail it to the user. Also
notify the user of the problem via a Warning notification
box.

= If the complexity metrics for that file are acceptable,
cause a tape archive to be created.

® When the tape archive has been successfully made, cause

a mail message to be sent to the project team announcing

a new release.

It is important to realize that each team member may
have slightly different versions of the above specification,
for very legitimate reasons. For example, a software quality
assurance engineer team member might want to take action
when a metric is found to be unacceptable.

Linking Events and Actions

Linking HP SoftBench Tools. Every action of every HP

SoftBench tool provides the hook needed for that action

to act as a trigger for other actions. By default, certain

actions are predefined, such as the view synchronization

that causes tools to know when the files they are displaying

become out-of-date so that the user can be informed. With

the HP Encapsulator, the user can define additional triggers

for situations where actions need to be automatic. For

example:

® When a file is checked out, cause the editor to display
it automatically for editing.

® Cause a file to be checked in whenever it has been saved
from the editor.

® Cause a build to be initiated whenever a file is checked
in.

® Cause the debugger to reload automatically whenever a
build is successful.

® Cause the static analyzer to update its data base
whenever a build is successful.

Linking HP-UX Tools. The HP Encapsulator can be used

to encapsulate and link UNIX tools. For example:

® Encapsulate the tape archiver (tar) and cause tape back-
ups to be made whenever a release is built.

® Encapsulate the job scheduling commands (at or cron)
and cause builds to run at night.

® Encapsulate the source analysis program (lint) and cause
it to analyze a file automatically when it has been
checked into version control or saved from the editor.

® Encapsulate the source file printing programs (pr, Ip) and
cause listings to be printed whenever a project release

66 HEWLETT-PACKARD JOURNAL JUNE 1990

is made.

" Encapsulate the performance display programs (prof,
gprof) and cause the performance data to be displayed
after the program has been executed.

® Encapsulate the symbol searching program (nm) to iden-
tify libraries that must be added to the library list when
the linker finds symbols it cannot resolve.

¥ Encapsulate the control flow program (cflow) and cause
the output to be displayed whenever a file is checked
into version control.

Linking Local Tools. After visiting several large customer
installations and presenting the ideas and capabilities of
the HP Encapsulator, it became clear that an important
source of tools to encapsulate and processes to automate
would be local tools developed on site. Examples of some
of the more common encapsulations and process specifica-
tions are:

® Encapsulate local metrics collection tools and cause
them to process the files when they have been checked
into version control.

= Depending on the nature of the local project management
tools, cause them to do their processing whenever a re-
lease is made or when a file is checked in.
Depending on the precise capabilities and structure of
the defect tracking mechanisms, cause the defect resolu-
tion component to prompt for its data whenever a new
local build is successful or whenever a file has been
checked out or in.
Linking Target Machines. When developing for a remote
target machine, there is typically a great deal of manual
intervention involved in transferring the application to the
target computer and building and testing it there. Assuming
there is some basic file transfer and remote job entry capa-
bility from the host to the target system, then using the
remote execution capability of the HP SoftBench environ-
ment and the Encapsulator, the cross-development process
could be improved as follows:

® Whenever a file is checked into version control on the
development system, cause it to be copied automatically
to the remote target.

¥ When a build is requested, optionally cause it to execute
on the target computer (typically running make or any
local compile mechanisms, such as a batch job).

¥ Encapsulate the job control facility on the target system

and cause builds and tests to be run there, initiated from

the local system.

Encapsulate any test scaffolding on the target system and

run tests of the application on the target system under

the control of the local development machine.

¥ Encapsulate any performance measurement facilities
available on the remote target and monitor performance
behavior remotely.

Linking Events with People. Perhaps the most important
form of link is the connection between people—individuals
and the team—and important events. The definition of an
important event likely varies as the development project
progresses. This is why the ability to change this definition
frequently and from user to user is an important capability
of the HP Encapsulator. Some typical triggers for coordinat-
ing teams are:

® Send mail to the project leader when files are checked

®

L

out.

B Send mail to the project team when a new version of a
common include file is checked in.

® Send mail to the project team when a successful system
build completes.

® Send mail to the project team when a system build fails.

® Send mail to the project team when a new release is
made.

® Send mail to the project team when weekly static
analysis data is available.

® Use encapsulated write(1) or talk(1) to initiate interactive
discussion of changes when an include file is checked in.

® Initiate an announcement tool (e.g., news or notes) to
inform the team of a new release.

Process Specifications in the Future

The examples given above show the types of process
specifications that can be designed to assist with software
development tasks and to link tools, computers, and
people.

EDL process specifications are among the most interest-
ing applications that exploit the HP SoftBench tool inte-
gration architecture. The technology is quite new. More
data needs to be gathered on the types of EDL process
specifications that users write and how much of their pro-
cess they wish and are able to automate.

Languages in general are difficult to design. Special-pur-
pose specification languages are often more difficult since
they are breaking new ground and trying to express new
ideas. EDL is a language used for specifying both tool en-
capsulations and process specifications. However, its de-
sign leans towards expressing those concepts necessary for
integrating a tool. In certain cases it feels awkward writing
a process specification with EDL. Language design for pro-
cess specification languages is a current research topic
being pursued at several university and industrial research
labs and ongoing progress in this area is sure to be seen.

HP Encapsulator Implementation

The Encapsulator description language is a special-pur-
pose specification language. It is implemented by means
of a compiler and an interpreter. The compiler is responsi-
ble for parsing an EDL input file and generating inter-
mediate code. The interpreter is responsible for the execu-
tion of that intermediate code. The HP Encapsulator is the
development environment for producing EDL code. The
HP SoftBench environment contains a portion of the HP
Encapsulator, which is the run-time environment for
executing compiled EDL code. This allows HP SoftBench
and the HP Encapsulator to be two separate products. Users
wishing to develop EDL code can do so with the HP Encap-
sulator and can deliver the production EDL code in binary
form to any HP SoftBench system.

Compiler

The compiler is responsible for generating intermediate
code from the user’s source file or files. It does this in two
passes. The first pass is an invocation of the C preprocessor
over the EDL source file. This allows the programmer to
make use of C preprocessor constructs such as macros,
include files, and conditionally compiled code. The second

pass invokes a parser over the preprocessed source code.
The parser scans the input source code into tokens, recog-
nizes and stores symbols, and forms productions. Produc-
tions are groups of tokens that form an EDL statement.
When a production is formed, intermediate code can be
generated. The scanner and parser were produced from the
HP-UX tools lex and yacc, respectively. These tools accept
descriptions of tokens and grammars and generate the
source code for the scanner and parser components.

Symbols are identifiers such as variable names within
the source program, and are stored in the symbol table.
The symbol table is used to record information about each
symbol, such as its type, value, printable name, and func-
tion address, and whether it represents a function. Because
there are often many symbols in an EDL program, a hashing
algorithm is used to make symbol lookup more efficient.

Intermediate code is generated by the compiler and
stored in the statement table. The statement table has three
components: the tag, the head, and the tail. The tag iden-
tifies the current instruction or operator. The head and tail
refer to the left and right operands of the current instruc-
tion, respectively. The following is an example of the code
generated by the simple EDL statement, “‘assign the variable
X the value Y plus 10.”

/* Here are the declarations of the integer variables. These

* two symbols are stored in the symbol table. No code is generated */
integer X, Y;

/* Here’s the assignment statement for which code is generated

* (below)*/

X =Y+ 10;

Table |
Intermediate Code Stored in Statement Table

Tag Head Tail
(1) Symbol Symbol Indexof X NULL pointer
(2) Symbol SymbolIndexof Y NULL pointer
(3) Integer Constant 10 NULL pointer
(4) Plus Pointer to stmt 2 Pointer to stmt 3
(5) Assignment Pointer tostmt 1 Pointer to stmt 4

Table Il
Identifier References Stored in Symbol Table

Name Type Value Function
Pointer to X Integer 0 None
PointertoY Integer 0 None

Table I is the statement table representation of the inter-
mediate code generated from the assignment example. The
intermediate code organization and symbol table were
modeled after interpreters for lambda calculus languages.”
The variables referenced in this example have their symbol
table indexes stored in the symbol table, as shown in Table
II. These indexes are returned from the hashing algorithm
during parsing and allow fast variable value lookup and
assignment during evaluation.

JUNE 1990 HEWLETT-PACKARD JOURNAL 67

Interpreter

The interpreter is responsible for the execution of inter-
mediate code. The interpreter is referred to as a recursive
evaluator because it looks at the tag of a statement in the
statement table and then calls itself (recursively) to evaluate
both of its operands (the head and the tail). The result of
calling the evaluator is a typed value. That value can be
used as part of an expression or statement. Here is the
pseudocode for the evaluator:

/* Pseudocode for the recursive evaluator, called eval() */
procedure eval(statement_pointer)

/* eval() takes a single argument, a pointer to a new statement */
{

/* For each operator there is a particular section of

*evaluator code */

switch (on tag of statement) {

case OPERATOR1:
/* Code specific to handling operator1 ... */
break;

case OPERATOR?2:
/* Code specific to handling operator2 ... */
break;

/* and so on for all operators */

} /* End of operator specific handling code */

/* Now return the result of the operation */
return result;

}

Each case of the evaluator has code specific to executing
the specified operator. If that operator has operands, they
will be stored in the head and tail of the current statement.
In the example described above, the assignment operator
has two operands. The head is the left-hand side of the
assignment statement, which is the variable reference in
which to store the result of the assignment. The tail is the
right-hand side of the assignment statement, which is the
expression Y + 10, itself a separate operation in the state-
ment table.

Other Components

Other essential components of the HP Encapsulator im-
plementation include the broadcast message server, event
handler, and pattern matcher interfaces, the EDL built-in
functions, the compile-time and run-time stacks, and the
dump/load facility.

Of these components, the dump/load facility has the most
significant product implications. This facility allows the
developer to compile an EDL program into a binary format.
This has two effects. It makes the subsequent loading of
the EDL code much faster and it allows the HP Encapsulator
to have a run-only version. This run-only version is bun-
dled into the HP SoftBench product. Thus, an EDL de-
veloper can use the Encapsulator to implement an encap-
sulation program and can deliver that encapsulation to any

68 HEWLETT-PACKARD JOURNAL JUNE 1990

HP SoftBench installation. The run-only version of the HP
Encapsulator is implemented by removing the code mod-
ules that handle source code parsing, adding an inter-
mediate code relocation module, and restoring code from
a file into tables in memory that the HP Encapsulator can
interpret. The term relocation refers to the task of relocating
an address in the code file into an address in memory.

Acknowledgments

I would especially like to thank Martin Cagan for his
continued enthusiasm for an often controversial piece of
software. It was his early use, inspiration, and guidance
that helped create the HP Encapsulator. I would also like
to thank the development team—Elizabeth Carpenter, Hill-
ary Davidson, Gary Fritz, Nancy Kirkwood, and Lisa Rogers—
for helping make the HP Encapsulator a product. Special
thanks goes to the HP SoftBench mail team—Bob Desinger
and Nick Baer—for implementing the most advanced en-
capsulation we have to date and for contributing to the
success of the HP SoftBench product. Finally, thanks to
Bill Campbell for teaching me the beauty of interpreters
and to my wife, Cathy, for never tiring of the term “encap-
sulation.”

Reference
1. A. Church, “The Calculi of Lambda-Conversion,” Annals of
Mathematical Studies, Vol. 6, Princeton University Press, 1941.

Introduction to Particle Beam LC/MS

Particle beam liquid chromatography/mass spectrometry
(LCIMS) yields classical, library-searchable electron impact
spectra for compounds that are too thermally labile or
nonvolatile to be analyzed by gas chromatography/mass

spectrometry (GC/IMS).

by James A. Apffel, Jr. and Robert G. Nordman

MASS SPECTROMETER (MS) is an analytical instru-

ment that is used to measure the molecular weights

and chemical structures of molecules introduced
into it. Samples are first ionized, and then the charged
fragments are separated and analyzed according to their
mass-to-charge ratios. HP makes quadrupole mass spec-
trometers, which accomplish this separation using a quad-
rupolar electrostatic field.

The ionization method determines the nature of the frag-
mentation of the molecules. So-called soft ionization
causes less fragmentation and hard ionization causes more.
Electron impact (EI) ionization, a hard ionization technique,
has evolved as the most useful technique, especially for
getting information on the structure of the molecule. When
the electron energy is controlled, the resultant fragmenta-
tion is extensive, thus elucidating the structure of the
molecule. The process is also quite reproducible. The mass
spectra that result can be compared to spectra stored in a
library and thus used to identify the compound being
analyzed.

Chemical ionization (CI) is a softer ionization technique
than EL It is often used when EI fragments the molecule
to the point where little or no unfragmented molecules are
left and thus the analysis will not yield the molecular
weight of the compound. CI spectra do not contain suffi-
cient fragmentation information to be library-searchable.

In addition to identification, mass spectrometers are also
used for quantitation down to very small concentrations—
parts per million and sometimes parts per billion.

Many samples of interest are not single compounds but
are mixtures of compounds. Examples are metabolytes in
a biological sample or the seepage from a toxic waste dump.
Before the mass spectrometer can do its job, the sample
must be separated into individual compounds. This separa-
tion is accomplished using a gas chromatograph (GC) or a
liquid chromatograph (LC). Both types of instruments are

Sample

produced by HP. In a gas chromatograph the sample is first
vaporized and then separated into its components as they
are carried by a gas stream. This gas stream can then be
introduced directly into the mass spectrometer and each
compound in the mixture analyzed as it enters. This com-
bined technique is known as GC/MS.

Many compounds are not volatile enough to be readily
changed into the gaseous state without decomposing. With
mixtures containing these relatively involatile and ther-
mally labile compounds an LC is usually the separation
instrument. In an LC the compound mixture is dissolved
in a suitable solvent such as water or methanol and then
separated into the individual compounds.

A problem is that this liquid stream cannot be introduced
at normal LC flow rates directly into the mass spectrometer
without overloading the vacuum system. Even if this were
not a problem, the liquid would have to be evaporated and
the solvent pumped away before the ionization would be
possible. Various techniques have been tried over the years
to solve this dilemma. With the moving belt interface," the
liquid is deposited on a moving belt, which carries it
through a desolvation stage and finally into the mass spec-
trometer. With the direct liquid introduction interface,” a
portion of the LC flow is nebulized directly into the mass
spectrometer. While the moving belt interface can be used
in a variety of ionization modes which generate a range of
analytical information, mechanical and thermal limitations
make operation difficult and problematic for compounds
of limited volatility or stability. Although direct liquid in-
troduction shows improved capability with respect to ther-
mally labile compounds, the technique generates only
chemical ionization spectra with the reagent gas limited
to HPLC (high-performance liquid chromatography) mobile
phase components. HP has made a direct liquid introduc-
tion product in the past.

None of these earlier techniques has earned liquid chro-

HP 5988A Mass Spectrometer

Fig. 1. For particle beam liquid chromatography/mass spectrometry (LCIMS), a special inter-

face is mounted between the LC and MS systems. The data system can be either an HP

59970C ChemStation for single-instrument operation or an HP 1000 computer system for mul-
tiinstrument, multitasking, multiuser operation.

JUNE 1990 HEWLETT-PACKARD JOURNAL 69

matography/mass spectrometry (LC/MS) the relatively
broad and routine use now enjoyed by GC/MS. More re-
cently, thermospray LC/MS® has been introduced and is
gaining in use. This interface requires the use of an addi-
tional chemical in the liquid stream which, when the liquid
is nebulized in a thermal nebulizer, causes charged droplets
to be formed which eventually become ions. A portion of
this stream is then sampled by the mass spectrometer. HP
now offers thermospray LC/MS as an option on the HP
5988A Mass Spectrometer. This technique significantly im-
proves both ease of use and the ability to analyze thermally
unstable or nonvolatile compounds, but spectral informa-
tion is still limited to CI spectra. Furthermore, thermospray
also suffers from problems with quantitative performance
and analytical predictability. The combination of thermo-
spray LC/MS and tandem mass spectrometry, or MS/MS,
offers improvements in the generation of structural informa-
tion, but MS/MS is costly and the spectra lack sufficient
reproducibility to be used in computer-based spectral li-
braries.

Particle Beam LC/MS

Particle beam LC/MS is a new approach to interfacing
high-performance liquid chromatography and mass spec-
trometry. It yields classical, library-searchable electron im-
pact (EI) spectra for compounds that are too thermally labile
or nonvolatile to be analyzed by GC/MS. Particle beam
LC/MS can also be used in chemical ionization (CI) mode

with free choice of reagent gases. This versatility, in com-
bination with ease of use and good quantitative perfor-
mance, means that particle beam LC/MS is a viable alterna-
tive, or in some cases a complement, to existing LC/MS
interfaces. Although particle beam LC/MS is a relatively
new technique, it has great potential because it satisfies
the two major trends in LC/MS development described
above: it is applicable to a wide range of compounds with
low volatility or thermal stability and it generates high-in-
formation-content EI spectra.

Hewlett-Packard’s system for particle beam LC/MS is
shown in Fig. 1. It uses existing HP LC, MS, and data
systems and a special particle beam interface mounted be-
tween the LC and the MS.

The HP particle beam interface is based on the initial
development of MAGIC LC/MS (Monodispersed Aerosol
Generation Interface Combining LC and MS) by Browner
and others.* Significant design improvements have been
made in performance, ease of use, and robustness.

Principle of Operation

A schematic of the particle beam LC/MS system is shown
in Fig. 2. A pneumatic nebulizer generates an aerosol from
the HPLC effluent. As the aerosol passes through a desol-
vation chamber, the volatile components (such as HPLC
mobile phase) are vaporized, leaving less volatile compo-
nents (such as analytes) as submicrometer particles. This
mixture of vapor and particles enters a two-stage momen-

Fused Silica
Capillary
LC Effluent Inlet Nozzle Stage 2
01101 mijmin 02 mm o.d. °
. 0.1 mm i.d.
To MS
. Stage 1
Orifice) Skimmer 2
Helium Gas Inlet 0.4 mm i.d. i
1o 2 Umin Skimmiey-1
Stage 2 Pumpout
Edwards E2M18
Stage 1 Pumpout lon
Edwards E2M18 Source
Cl Reagent Gas Inlet
Nebulizer Desolvation Chamber Momentum Transfer Tube MS System
Separator
Pressure <20 bar 200 torr S1 < 10 torr <2x107% torr <2x107° torr
(Back Pressure) S2 < 0.5 torr
Temperature Ambient 35 to 45°C 200 to 300°C

Fig. 2. Diagram of the HP particle beam interface for LCIMS.

70 HEWLETT-PACKARD JOURNAL JUNE 1990

tum separator in which the relatively low-momentum
vapor molecules are pumped away while the higher-
momentum particles continue into the source of the mass
spectrometer, where they are vaporized, ionized, and fi-
nally mass analyzed.

The nebulizer, which is pictured in Fig. 3, consists of a
simple coaxial pneumatic nebulizer. The HPLC effluent
passes through the fused silica capillary running down the
center of the nebulizer while the helium nebulization gas
flows around the capillary and forms the aerosol at the
exit. The HPLC effluent can be any commonly used HPLC
mobile phase, such as water, methanol, acetonitrile,
hexane, or chloroform. The single restriction on the mobile
phase is that if a mobile phase buffer is necessary, the
buffer must be volatile. HPLC flow rates between 0.1 and
1.0 ml/min are acceptable. Typical helium flows are be-
tween 1 and 2 l/min. The nebulizer has a replaceable 2-um
filter to prevent clogging of the fused silica capillary. How-
ever, since the capillary internal diameter is 100 um, the
in-line filter is merely a precaution.

The desolvation chamber is a hollow cylindrical section
between the nebulizer and the momentum separator. The
purpose of the desolvation chamber is to allow sufficient
time and travel space for effective thermal transfer—via
the carrier gas—from the desolvation chamber walls to the
aerosol droplets to evaporate the solvent. The desolvation
chamber is maintained at approximately 200 torr and 45°C.
Although earlier attempts in similar interfaces used lower
pressures at this stage, the relatively high pressure is neces-
sary for the helium gas to maintain thermal transfer be-
tween the desolvation chamber wall and the solvent drop-
lets. The desolvation chamber is thermostatically con-
trolled to replace the heat that is absorbed as the solvent
droplets evaporate.

The momentum separator consists of three main parts:
a nozzle and two skimmers. The nozzle funnels the flow
of the vapor particle mixture, creating a supersonic jet ex-
pansion (and consequently the particle beam). In a super-
sonic jet expansion, the fluid flow exits from the nozzle at
supersonic velocity. At a specific distance from the nozzle
orifice, a region known as the mach disk exists, where the
flow makes a transition from supersonic to subsonic veloc-
ity. The first skimmer orifice is placed just inside the mach
disk so that the central particle beam is efficiently trans-

Desolvation Chamber

LC Effluent
Inlet

Capillary

Helium Inlet

Fig. 3. Nebulizer detail.

mitted while allowing the vapor molecules to be pumped
away. Similarly, the second skimmer removes more of the
vapor while transferring a high proportion of the analyte
particles. The ultimate result of this two-stage process is a
pressure reduction from 200 torr in the desolvation
chamber to approximately 5 torr in the space between the
nozzle and the first skimmer, then to 0.2 torr in the space
between the two skimmers, and finally to 2x 107° torr in
the mass spectrometer source manifold.

After exiting the momentum separator, the particle beam
passes through a transfer tube into the mass spectrometer
ion source. The particles strike the inner walls of the source
body (which are held at approximately 250°C) and are va-
porized. The vapor phase molecules thus generated can be
ionized by either electron impact or chemical ionization.

Performance Optimization

One of the most important features of the particle beam
LC/MS system is its ease of use. In most cases, optimization
of performance can be accomplished by a single adjust-
ment, the nebulizer. It is also possible to adjust several
other operating parameters, such as desolvation chamber
temperature, helium flow rate, and source temperature, but
default values for these parameters usually work well. All
of these parameters are mobile phase dependent except for
the MS source temperature, which is compound depen-
dent.

A knob on the back of the nebulizer can be turned to
adjust the axial position of the fused silica capillary in the
nebulizer body. Since the optimal position is mobile phase
dependent, the position must be adjusted when running
different mobile phases. For gradient elution, a com-
promise position is chosen.

Fig. 4 shows the signal intensity for 10-ng injections of
caffeine as a function of nebulizer position and mobile
phase. Although the exact shape of this surface will change
for different fused silica capillary tips, the two-maxima
shape is typical, the minimum being at a point where the
fused silica capillary tip is almost flush with the nebulizer
orifice. Note that when higher proportions of water are
used in the mobile phase, there is a loss of signal. This

607

40

Signal

20+

-5 -3 -1 1 3
Position

Fig. 4. Signal intensity for 10-ng injections of caffeine as a
function of nebulizer position and mobile phase.

JUNE 1990 HEWLETT-PACKARD JOURNAL 71

Optimal Temperature

0+ T T T T
60 56 52 48 44 40 36 32
Temperature (°C)

Fig. 5. Effects on sensitivity of desolvation chamber temper-
ature and mobile phase composition.

trend is seen with other reversed-phase solvents as well,
such as water/acetonitrile and water/THF mixtures. If the
nebulizer is adjusted properly, the loss of signal is approx-
imately 50%. In the case of normal-phase solvents, such
as hexane and chloroform, this signal loss is not seen.

Although the desolvation chamber temperature can have
a significant effect on sensitivity, it is generally unneces-
sary to adjust it, since a temperature of 45°C is near optimal
for most mobile phases. The effects on sensitivity of desol-
vation chamber temperature and mobile phase composition
are shown in Fig. 5. Again, higher proportions of water
show poorer sensitivity than pure organic solvents. In cases
where high proportions of water are used exclusively (iso-
cratic), it is sometimes advantageous to raise the desolva-
tion chamber to 50°C.

The helium nebulization gas flow rate also has an effect
on sensitivity for high aqueous mobile phases. In most
cases, a flow of 2 I/min (approximately 40 psi inlet pressure)
is optimal, but when using high organic mobile phases, it
is possible to reduce the flow to 1.5 1/min. The effects on
sensitivity of mobile phase characteristics and helium flow
rate are shown in Fig. 6.

Operation of the particle beam LC/MS system has been
optimized for liquid inlet flows of 0.5 ml/min or less. Al-
though flows as high as 1 ml/min can be used, there is a
loss of sensitivity at higher flows as illustrated in Fig. 7.
Below approximately 0.5 ml/min, the response plateaus at
a maximum level. This trend is true for both high aqueous

—-————.—_ﬁ“
100 — 100
- / o
g i 60 §
o 50 — K
7] o°
0 f f f T T

0.4 0.6 0.8 1 1.2 1.4
Helium Flow (I/min)

Fig. 6. Effects on sensitivity of mobile phase composition
and helium flow rate.

72 HEWLETT-PACKARD JOURNAL JUNE 1990

and high organic solvents. In practice, the need to use a
flow rate of approximately 0.5 ml/min or less for maximum
performance is not a limitation since this is the ideal flow
range for 2-mm i.d. columns. These columns can be used
with conventional HPLC equipment as a simple alternative
to more conventional 4.6-mm i.d. columns while offering
the additional advantages of reduced solvent consumption
(approximately fivefold), reduced packing consumption for
exotic stationary phases, and increased mass sensitivity
when used with concentration dependent detectors such
as UV. Columns are commercially available with a wide
range of selectivities and efficiencies comparable to 4.6-mm
i.d. columns.

Finally, the mass spectrometer source temperature plays
an important role in particle beam LC/MS spectral quality.
If the source temperature is too high, significant thermal
degradation may occur. Actually, this effect is similar to
that seen for all MS operation modes. The effect of temper-
ature depends upon the thermal stability of the analyte.
Caffeine, for example, shows very little change in either
signal intensity or spectral characteristics over a wide tem-
perature range (150 to 350°C), while some corticosteroids
show a very strong effect. Typically, signal intensity and
thermal degradation increase with increasing source tem-
perature. Thermal degradation is evidenced by a decrease
in the ratio of higher-mass ions to lower-mass ions.

Quantitative Performance

Because of its relatively recent introduction, particle
beam LC/MS has not been fully characterized. In particular,
the quantitative performance has been evaluated in depth
for only a small number of compounds. In addition to
studies already under way, however, user-generated results
will quickly help to clarify this area in the near future.
This section summarizes the performance to date.

Response factors for particle beam LC/MS are not totally
uniform. As a result, different compounds exhibit a range
of detection limits. This is illustrated by the histogram
shown in Fig. 8. The data in this plot shows the minimum
detectable quantities (MDQs) for 92 pesticides in nano-
grams. The tests were run on an HP 5988A mass spectrom-
eter in flow injection analysis (plug injections) and calcu-
lated as the amount required to generate a signal to peak-to-
peak noise ratio (S/N) of 2 using total ion current (TIC) in
full-scan (scan width of 50 amu to the molecular weight

03 04 05 06 07
Flow Rate (ml/mn)

Fig. 7. Effects on sensitivity of mobile phase flow rate and
composition.

+ 50 amu) data acquisition. It can be seen from this data
that 50% of the compounds tested show detection limits
below 25 ng. As a rule of thumb, 100 ng of most compounds
will generate useful mass spectra. There are compounds
that perform especially poorly in EL such as glyphosine
(MDQ = 635 ng) and compounds that perform especially
well, such as diuron (MDQ = 2 ng). Although tests for the
MDQs of these pesticides had not been run on the newer
HP 5989A mass spectrometer at the time this paper was
written, the results are expected to improve by about a
factor of five when using the newer instrument. It should
be noted that while the response factors do show some
variation, the range is less than that seen for thermospray
on similar compounds.

The linearity of particle beam LC/MS is relatively inde-
pendent of sample characteristics. Although the calibration
curve is fit well with a standard linear function r* =
0.9995), there appears to be a reproducible deviation from
linearity at lower levels. This can be seen in Fig. 9, which
is a calibration curve for caffeine. The data shown is from
selected ion monitoring for a mass-to-charge ratio (m/z) of
194. (The molecular weight of caffeine is 194.)

The reproducibility of particle beam LC/MS is excellent.
Typically, full-scan EI TIC data shows relative standard
deviations (RSD) of 10% or less, while extracted ion cur-
rents or selected ion monitoring data shows RSDs of 5%
to 7%, depending on the concentration level. This repro-
ducibility is partially the result of noise characteristics that
are relatively independent of HPLC flow pulsations, yield-
ing smooth spike-free chromatograms.

Applications

Particle beam LC/MS has potential utility in solving
varied analytical problems. From the confirmation of iden-
tity and quantitative analysis of environmental contamin-
ants to structure elucidation of pharmaceutical and biosci-
ence related samples, the capability of generating EI or CI
spectra from previously unapproachable compounds opens
a number of exciting possibilities.

One of the application areas of greatest potential for par-
ticle beam LC/MS is the analysis of samples of environmen-

24

20

Frequency

0 200 400 600 800
Minimum Detectable Quantity (ng)

Fig. 8. Minimum detectable quantities for 92 pesticides for
a signal-to-noise ratio of 2 in full-scan data acquisition.

tal interest. Particle beam LC/MS solves two critical prob-
lems in this area. First, it allows samples to be analyzed
that cannot be analyzed by GC/MS. In a recent study of a
California site,® it was determined that only 10% of the
total organic halogen (TOX) could be accounted for using
conventional analytical methods. This brings up the
frightening question, “What potential health hazards are
we exposed to but unable to monitor because of analytical
limitations?* Particle beam LC/MS may allow us to expand
the range of compounds that we are able to examine. Sec-
ond, because of the legal and economic ramifications of
environmental monitoring, it is critical that the identifica-
tion of environmental contaminants be unequivocal. In
many cases, the CI spectra provided by thermospray or
other LC/MS techniques simply lack sufficient information
content to make these identifications. The EI spectra pro-
vided by particle beam LC/MS, on the other hand, are gen-
erally specific enough to be a source of positive identifica-
tion.

In 1987, approximately 150 compounds were removed
from the U.S.A. Environmental Protection agency’s Appen-
dix VIII to form Appendix IX, for the most part because of
insufficient analytical methodology. Fig. 10 shows the sep-
aration of some of those compounds. Note the excellent
chromatographic resolution and fidelity. Of the com-
pounds shown, the spectra of all but one (amitrole) were
found in the Wiley/NBS spectral library and were, in fact,
the first choice identified by probability-based matching
(PBM) using a computer-based library search in spite of
the fact that none of them is amenable to GC/MS separation.
Many of the spectra found in the Wiley/NBS spectral library
were generated by direct insertion probe (DIP).*

A similar environmental application, the analysis of
triazine pesticides, is shown in Fig. 11. Although some of
the triazine pesticides can be separated using GC, HPLC is
the separation method of choice because of its simplicity

*Direct insertion probe is a technique whereby a small amount of the material is analyzed
by placing it on a heated probe, which is inserted directly into the mass spectrometer ion
source. If the material can be vaporized without decomposing, mass spectra can be
obtained

18 —

Signal

]
0 200 400 600 800 1000

Amount Injected (ng)

Fig. 9. Particle beam LCIMS linearity. The solid line is the
linear regression line. The inner dashed lines are the 95%
confidence limits and the outer dashed lines are the 98%
confidence limits.

JUNE 1990 HEWLETT-PACKARD JOURNAL 73

TIC of VI5:APPIX7.D

EPA APPENDIX VIII

7.0E+5 10008
3000
8200
7000
6008
5000
4000
3000

183
7

77
/
6.BE+5

2000
1909

DICHLOROBENZIDINE

3000
8000
7000
6008
5000
4000
3000
2000

5.8E+5 EE]

UREA

PHENYLTHIO!

7IDIN

4.BE+S

1808

BENZ

10000
EEEES
80888
7000
6000
5000
4008

3000

2000 /

1800

Nl

Abundance
Abundance

a8

REA

3.0645

OUREA
NAPHTHYLTHIOL

12200
seee
sge0
7000
6808
seee
4200
3000
2000 g
1000

PHENYLENED!AMINE
THRIAM

WARFARIN

]
m
+
o

MALEIC HYDRAZIDE
{YLENE TH

3(93:96 - 85:89) Avg 2.159:2.227 min.

. rll J;‘], T

2C131:132 - 117:12@) Avg 3.032:3.855 min.

G

3(196:198 — 192:194) Avg 4.527:4.572 min.

.

7

e & i

#(219:221 - 213:215) Avg 5.@55:5.181 min.

from V1S:APPIX?.D

131 WARFARIN .44

l’“\.

from V1S:1APPIX?.D|

221

sz PHENYLTHIOUREA

-

from V1S:APPIX?7.D|
THIRAM

143 248

7

Fig. 10. Separation of compounds
in U.S.A. Environmental Protection
Agency Appendix IX by particle
beam LCIMS. The left side shows
the total ion current (the chromato-
graphic signal) out of the mass
spectrometer. The right side shows

177 207 238
{
from V1S:APPIX?.D

DICHLOROBENZIDINE s,

154
N b 215
PN

7/
ol ad
180

L]
]
m
+
L]

° 5.8 6.8 7.@

L, : 1.0 2.0

3.@ 4.
Time (min.)

the spectral data out of the mass
spectrometer.

2s@ 3e8

158 200
Mass/Charge

and the on-line sample handling characteristics of auto-
mated HPLC. Using a very simple valving configuration,
it is possible to preconcentrate relatively large volumes of
environmental samples automatically. The spectra shown
on the left in Fig. 11 are extracted from a peak in the total
ion chromatogram that appears to be a single homogeneous
peak but is, in fact, two nearly coeluting components.
Through selected ion profiles, it is possible to separate and
quantify these two compounds.

Fig. 12 shows an example of a sample of pharmaceutical
interest, the separation of corticosteroids. As mentioned

above, corticosteroids show a strong temperature depen-
dence. Although signal intensity can be enhanced by using
a higher source temperature, this results in increased ther-
mal degradation. The chromatogram shown represents 100
ng per component at 250°C.

Another example of a life-science application is the sep-
aration of aflatoxins B1, B2, G1, and G2, as shown in Fig.
13. Through the use of selected ion monitoring, it is possi-
ble to detect and confirm the presence of these compounds
at relatively low levels.

Finally, the analysis of monosaccharides and disac-

Ion range 128.8@ to 3B88.8@ amu. from V1S:TRISCANS.D 12282
7.BE+S qee
W TRIAZINE PESTICIDES saee] Atrazine
6900
2 PB LC/MS
6.0E+5 E 208 74 7
<BEEST w 32 217
S ., 2eeo] N { 138 =
@ o
a
] E a14 F' I rv*“ L}[~+ i** + r+|'- + -
S
5.8E+5 g “emem 1
w
wz w = J LIBRARY
_}KJ %,: ;5 - 4080
9 df 22z _copa]
g E BBy
<O 5 2
4.86+5 % “<a % gi =
H w z 5 -1e0001
c < = se 120 150 200 258
2 ~ & @ Mass/Charge
< g; i i 190088
a e = 5 312
€ s ¢ CE(G ”“l Cyprazine
R <0
2 g EEEER PB LC/MS
& 2
42020 28 17@
8 w - ~ 128 228
2. 0E+s] g % o 2eme] N l 7
< o
e} = <] ! sibad b & TAF I
2 gl MF e g g r
5
w 2 -2000]
Z «
1.0ess s ~+oee] LIBRARY
w -6200
L\ —saﬂal
.95 - - ~ 10000 . Fig. 11. Analysis of triazine pes-
2.0 4.) 8.2 10.@ 182 158 200 250 . 3
Time tmici.) Miss/Charge ticides by particle beam LCIMS.

74 HEWLETT-PACKARD JOURNAL JUNE 1990

TIC of DATA:STER4./D.D 12000
7eeee] j (* DEOXYCORTISONE 1%
CORTICOSTEROIDS | sooe] dlas
= 1er 7
o r e
e L PBLC/MS ‘
Bo— @ L E 4200 155
,Z & 2008 i
@l & H
:—” ; ;IJ 2 -zo00]
seees & N = LIBRARY
o & —4o00
> Z
x o]
Q o -seee
a o
40000 I - s
H o - 10000
< 5 15@ 200 2se E 3se
° %] Mass/Charge
3 = xeaeai
4 o 24 PROGESTERONE
30000 i o Ll
b4 5
3 @ 2 6200 PB LC/MS
= gy e
@ 5 4000 2 272
o) g‘g 147 173 e N E1
20000 % 8% - EB“““M 7 >N as
= £0 E . VJH..,+“%4 T b il o il o i) k/
8 5
2 -zee0
10220 _4000] LIBRARY
—60288
-seee]
P - 1008 Fig. 12. Separation of cortico-
2 4 5 [12 12 14 158 200 250 E) 3se X .
L Time tmin.d Masa/Charge steroids by particle beam LC/MS.

charides using ammonia chemical ionization particle beam interfacing LC and MS. Its EI capability, excellent quantita-
LC/MS is shown in Fig. 14. This application provides a tive performance, and ease of use promise to make it the

means of performing group-type separations since all pen- new standard for routine LC/MS operation. It should be
tose monosaccharides, hexose monosaccharides, and noted that, like any technique, particle beam LC/MS does
homogeneous and mixed disaccharides yield group-spe- have its limitations, and there are samples that will be

cific spectra. Note that the detection limits are well below better approached using other techniques such as thermo-
those obtainable with conventional HPLC and refractive spray LC/MS. Furthermore, particle beam LC/MS is a rela-

index detection. tively new technique and is not totally mature. There are
a number of areas that remain to be understood and charac-
Conclusion terized. Hewlett-Packard’s goal in implementing particle

Particle beam LC/MS offers an exciting new approach to beam LC/MS is to provide a tool for solving analytical prob-

» Ion 286.28 amu. from DATAR1AFBS-2.D ne(122:13@ - 111:117) Avg 3.995:4.243 m!n: from DATA:AF-68.D
182087 12090
sooa] SIM AFLATOXINS 30087 AFLATOXINS G2 2es
covnl 7o0e] (Scan 100 ng/component)
oo AFLATOXINS G2 soen » 330
4 4200
2000 3000 / | \
2e02] 201 229 274
s Ion 284.2@8 amu. from DATA:AFBS/2.D 72 7 313
120007 l“: Lot sl ks wili I(x.. ikt | P A
80207 ne(145:151 — 138:1141) Avg 4.704:14.889 min. from DATA:AF /8. D
180200
6000 9900
+ 000 AFLATOXINS G 9o0] AFLATOXINS G1 263
7800
200087 6002 38
s5eee >
s Ion 314.20 amu. from DATA:1AFBS/2.D 40007 213 22 241 1
180887 3000
o 8o20] zoo0 I L r'a 310 |
o
- 2 1950 h..J.ﬁL.. docdl, bohd o O b
° AFLATOX‘NS B2 ;n-(lSE:\7l - 156:16@8) Avg 5.350:5.584 min. from DATA:AF-/8.D
¢ 4o00] ¢ 10000
a a seeej AFLATOXINS B2 14
20008 « 8020 |
7eee
£ Ion 312.2@ amu. from DATA:AFBS-/2.D 6008
120007 soee 271
|aee8] 4200 285 |
3000
ooee AFLATOXINS B = L
4oe0] ! 12997 bivmvat Lo w0 hlud b 5
20004 ns(197:203 - 18%5:191) Avg 6.305:6.492 min. from DATA:AF-8.0D
18000
’XBBXB:!UH range 108.20 to 490.02 amu. from DATA:AFBS-2.D :::g AFLATOXINS B1 12
7eee
8000 6200
6000 TIC f::z o i
4000 3000 283
2000 2< 2z7 258 e h .
2008 . 3 .
i 1000 e A I Fig. 13. Separation of aflatoxins
2.2 Time (m‘!‘r\a.) 6.0 200 22e 240 N.,Z‘E,BCh‘f:.B 300 328 340 by par[/cle beam LC/MS

JUNE 1990 HEWLETT-PACKARD JOURNAL 75

Abundance

19008
8000
6008
4200
2000

]

2(59:64
18008

8208
6000
4008
2000

]

Abundance

8000
6000
4000
2000

108
38

l 152[
O R i

- 56:58) Avg 2.159:2.

138 se

\\\ 168
{ T L[

2(96:104 - 84:89) Avg 3.363:3.
19208

138 16

St

TIC of DATA:SUGSCANI.D 2(34:37 ~ 38:33) Avg 1.345:1.443 min. from DATA:SUGSCANI.D
52000 1201
SUGARS s@ee 58 RIBOSE
AMMONIA CI seday 108
hbied 180 224
%] La
& 3(44:47 — 41:42) Av 1.671:1.768 min. from DATA:SUGSCANI.D
= 12000
5
= sgee 58 ARABINOSE
] " " cese] 108
19880 @ & seo0]
e e 2000 /lss 53
: 5 .
S Q o il 72 A
- 3(58:53 - 47:48) Avg 1.866:1.963 min. from DATA:SUGSCANI.D
17

FRUCTOSE
224

321 min. from DATA:SUGSCANI.D

GLUCOSE

224

i

624 min. from DATA:SUGSCANI].D

SUCROSE o
/

3zs l
2

242 270
2 S

21171123 -~
]

1000
CEEE]
6000
4000
2008

2(135:14
1800

118:113) Avg 4.849

:4.245 min. from DATA:SUGSCAN1

MALTOSE

342
240 282 4
{ 7 Vi Vd

1 - 1281131) Avg 4.636:4.831 min. from DATA:SUGSCANI

sopej '3 Tee LACTOSE Fig. 14. Analysis of monosac-
<o00 J ,/sal . von charides and disaccharides by
o P { Vil i ammonia chemical ionization par-
G BREZCT WE L N ticle beam LCIMS.
lems. As experience accumulates, strengths and limitations References

of the technique will become more clearly defined.

Afterword

As this article was going to press, the HP 5989A mass
spectrometer was introduced, along with a new particle
beam interface. The data in this article was acquired using
the older HP 5988A system. Data taken to date on the newer
HP 5989A system indicates an improvement in sensitivity
on the order of five to one over the HP 5988A. This improve-
ment is compound dependent.

Acknowledgments

The authors wish to thank Rune Brandt and Mirko Mar-
tich for their outstanding contributions to the design of the
instrument, Laura Cerruti for her diligent running of test
samples, Jean-Luc Truche for his gentle and knowledgeable
leadership, John Michnowicz who recognized from the
start the power of the technique, Dave Gunn and Ernie
Strehlow for modelmaking bordering on magic, and all the
people at the HP Scientific Instruments Division who
worked so hard to make this product a success.

76 HEWLETT-PACKARD JOURNAL JUNE 1990

1. D.E. Games, “Combined High-Performance Liquid Chromatog-
raphy and Mass Spectrometry,” Biomedical Mass Spectrometry,
Vol. 8, no. 9, 1981, pp. 454-462.

2. J.B. Crowther, T.R. Covey, D. Sivestre, and J.D. Henion, “Direct
Liquid Introduction LC/MS,” LC Magazine, Vol. 3, no. 3, 1985,
pp. 240-254.

3. C.R.Blakelyand M.L. Vestal, “Thermospray Interface for Liquid
Chromatography/Mass Spectrometry,” Analytical Chemistry, Vol.
55, 1984, pp. 750-754.

4. R.C. Willoughby and R.F. Browner, “Monodispersed Aerosol
Generation Interface for Combining Liquid Chromatography with
Mass Spectrometry,” Analytical Chemistry, Vol. 56, 1984, pp-
2626-2631.

5. M. Brown and R.D. Stephens, ‘“Non-Conventional Pollutants
in Ground Water as Characterized by LC/MS,” Proceedings of the
EPA Symposium on Waste Testing and Quality Assurance, 1988,
G-28.

Advances in IC Testing: The Membrane

Probe Card

Conventional integrated circuit wafer test probes have
mechanical and electrical weaknesses, especially for
testing high-frequency or high-speed devices and chips
that have large numbers of inputs and outputs. Membrane
probe technology overcomes most of these limitations.

by Farid Matta

between IC manufacturers. However, most test
procedures fall into one of two general categories:
parametric testing and die-sort testing.

Parametric testing is intended to check basic device data
such as threshold voltages and sheet resistances. It is per-
formed on special patterns, known as test chips, included
on the wafers. For a given wafer or wafer lot, passing the
parametric test is a necessary but not sufficient condition
for yield.

Die-sort testing is performed on all individual chips to
sort out the good from the bad. It is normally designed as
a sequence of increasingly complex routines so that gross
failures are detected early and test time is not wasted on
useless chips. Ideally, die sorting culminates in an at-speed
test that exercises the chips at a frequency at least as high
as the intended application. This way, the manufacturer
ascertains that the parts will perform to specifications be-
fore more resources are spent on their packaging.

The hardware involved in either of the above processes
typically consists of an electronic tester, which executes
the test program, a prober, which performs the mechanical
manipulation of the wafers, and a probe card, which pro-
vides the electromechanical interface between the tester
and the device under test (DUT). Usually, the probe card
is connected to the tester via a printed circuit board known
as the probe-card motherboard or the performance board,
which is customized for individual ICs or IC families.

The test software is the multitude of programs that con-
trol the electronic tester, commanding it to apply to the
inputs of the DUT specific combinations of voltages and
currents (known as test vectors), and to measure certain
voltages, currents, and time intervals at the outputs of the
chip. The measured responses are then compared with pre-
determined allowed ranges, and accepted or rejected ac-
cordingly.

W AFER TEST TERMINOLOGY and practices vary

Testing High-Performance Devices

Wafer test requirements vary with a number of factors.
For example, certain specifics are dictated by the technol-
ogy (bipolar, MOS, GaAs), by functionality (logic, memory,
linear), by the nature of the signal (digital, analog, mixed-
signal), and by other factors. In any of these categories,
there are typically a majority of low-to-moderate-perfor-

mance products and a smaller number of high-performance
ones. The definition of what constitutes a high-perfor-
mance IC may not always be clear. However, at least for
wafer testing, two categories of chips pose known chal-
lenges: devices with high input/output (I/O) counts and ICs
designed to operate at high frequencies or high switching
speeds.

Despite the fact that the probe card is the smallest and
least expensive component of the test setup, it is usually
the main cause of the difficulties experienced in testing
high-performance devices. Specifically, when the number
of contact pads on the chip is greater than about 150, and/or
when the contact pads are spaced particularly closely, it
is difficult or impossible to procure conventional probe
cards that will work reliably in factory conditions. Also,
when the operating frequency or switching speed is high,
the probe card’s parasitic effects can distort the test condi-
tions as well as the measurement results.

Distortions resulting from probe-card parasitic effects
can occur when either of the following conditions is pres-
ent:
= The wavelength of the highest significant frequency is

of the same order as the linear dimensions of the probe.

When this is true, at any given instant the voltages and

currents at different points of the probe can be substan-

tially different. In this case the probe represents a trans-
mission line section, in which such phenomena as signal
reflections can become dominant.

s Parasitic reactances in the probes are sufficiently high
to redistribute the circuit voltages and currents. In digital

Ground Plane

v,
[Zs
Printed Circuit Board o—N YYY L0
Probe Trace 7m7

(a) (b)

Fig. 1. Conventional wafer probe. (a) Structure. (b) Equiva-
lent circuit.

JUNE 1990 HEWLETT-PACKARD JOURNAL 77

situations the same criterion is formulated differently;

namely, one is faced with a high-speed testing situation

when the DUT switches faster than the time constant of
the circuit containing the parasitic reactance.

Chip makers sometimes circumvent the difficulty of ob-
taining high-pin-count probe cards by using self-test, so
that only a subset of the pads needs to be accessed. How-
ever, this approach imposes a penalty in wafer “real estate”
and results in incomplete test coverage. No way to circum-
vent the signal integrity problem has yet been found.

Failure to perform at-speed testing at the wafer level
leads to the wasteful packaging and retesting of a certain
volume of bad chips that could have been identified and
rejected earlier. Depending on the complexity of the part
and on the signal frequencies involved, that fraction can
be as high as 10% of the total. The financial impact depends
on the incremental packaging and testing cost. To illustrate
the magnitude of the problem, consider the following con-
ditions, which are not unusual for a high-performance IC:

Annual production volume: 100,000 chips
Fraction of rejects at packaged test: 10%
Cost of packaging per chip: $100

Cost of final test per chip: $2

Total waste per year: $1,020,000.

Hence, the availability of at-speed testing capability at
the wafer level is of pressing importance to the IC industry,
and the main element of that objective is the development
of an IC probe card capable of addressing a large number
of inputs and outputs and of maintaining signal integrity
for a wide range of frequencies and operating speeds. To
develop such a technology, it is necessary to identify and
formulate the problems preventing conventional probe
cards from delivering the needed prformance.

Conventional Probe Card Technology
A conventional wafer probe card consists of a set of fine
styli, or probes, mounted on a carrier substrate, typically

Probe Card

o} Y ?ue o)

L
e

O—

o

(b)

Fig. 2. The conventional probe as a signal line. (a) Equivalent
circuit. (b) Equivalent low-pass filter.

78 HEWLETT-PACKARD JOURNAL JUNE 1990

a printed circuit board. The probes are arranged so that
their tips form a pattern identical to that of the DUT’s
contact pads. The outward ends of the probes are soldered
to traces on the carrier printed circuit board, which extend
to a connector that interfaces the probe card with the per-
formance board.

The probe card is normally mounted face down on the
prober, which brings the wafer to be tested to a position
under the probe card, aligns it so that its contact pads are
against the tips of the probes, and raises the wafer until
contact is made. In practical conditions the tips of the
probes may not be precisely in the same plane, and the
probe card may not be exactly coplanar with the surface
of the DUT. To compensate for such variations, the prober
raises the wafer beyond first contact by a controlled
amount, called the overdrive.

The probes on the probe card are usually held at a low
angle to the plane of the DUT, so that when they are pushed
by the wafer, the tips slide along the surfaces of the pads.
This horizontal movement, called scrub, helps remove the
oxide films on the surface to ensure good electrical contact,
and is an important element in the art of wafer probing.

A number of variations on this basic technology exist,
which attempt to improve the mechanical and electrical
performance of the probe card. In some advanced versions,
the carrier printed circuit board is designed to provide a
controlled-impedance environment in which each trace
presents a section of transmission line of known charac-
teristic impedance. A schematic illustration of a line on a
conventional probe card is shown in Fig. 1a.

Conventional probe cards have a number of inherent
limitations. Some are related to their mechanical properties
and others to their electrical performance.

Mechanical Limitations. Because the contact element, the
probe, is a thin long structural member, it tends to change
its spatial location under the repeated stresses of normal

Stimulus

ts

Response

t.,

Fig.3. The effect of parasitic inductance in the time domain.

operation. Consequently, the user needs to realign the
probes in the horizontal plane and along the vertical axis
after some number of touchdowns. This tedious operation
translates to a significant increase in the cost of ownership.

At higher probe densities the problem of maintaining

registration is further aggravated. High densities require
that the individual probes be made even thinner, longer,
and closer together. Such conditions are not only more
conducive to the loss of registration, but they also make
the realignment procedure too sensitive to be performed by
the user, and the probe cards need to be returned to the
factory for costly maintenance.
Electrical Limitations. The equivalent circuit of a single
line in a conventional probe card is shown in Fig. 1b. Here,
L, is the inductance of the probe and Z,, is the characteristic
impedance of the transmission line formed by the trace
and the ground plane on the printed circuit board carrier.
Typical values of these parameters are: L, = 10 nH and
Z, = 50Q. Such a line may be used either to transmit a
signal from the tester to a DUT input (or from a DUT output
to the tester), or to supply a power or a ground connection
to the DUT. We will discuss its behavior in each of these
two situations.

Fig. 2a shows the equivalent circuit of a conventional
probe card in a simplified input-connection configuration.
(An output connection would not be much different in
principle.) In the frequency domain, the parasitic induc-
tance L, of the probe causes the circuit to behave like the
low-pass filter shown in Fig. 2b, and determines the
bandwidth of that filter. Assuming matched conditions,
the upper 3-dB limit of the band is the frequency f at which:

(2mf)(2L,) = Zo.

For Z, = 50 and L, = 10 nH we find the bandwidth to
be about 400 MHz.

The effect of the needle inductance in a high-speed
switching situation is better illustrated in the time domain
(see Fig. 3). When the tester sends to the DUT a pulse
stimulus having a rise time t,, the signal received at the
input of the DUT will have a longer rise time, t,,, because
of the circuit’s parasitic inductance 2L,. The increase in
rise time is approximately 2.2 times the time constant 2L,/
Z,, or about 1 ns.

Probe Card

1 L,

Lp

Fig. 4. A power line in a conventional probe.

Generally, a circuit’s bandwidth BW and its effect on the
rise time t, are related by the known expression:’

BW(3-dB) = Kk,

where K is a constant that ranges between 0.35 and 0.45.
With this in mind, the bandwidth and the rise time can be
used interchangeably.

Waveform deterioration is not the only problem caused
by the parasitic inductances of the probes. In Fig. 2a, the
chip ground node and the tester ground node are not always
at the same electrical potential. This can lead to erroneous
testing and/or to unwanted coupling between different sig-
nal lines served by a common ground probe. Another prob-
lem is that the discontinuity between the probe and the
transmission line causes multiple reflections of the signal,
which result in a long settling time. Also, the mutual induc-
tance and the coupling capacitance between the long un-
shielded needles contribute to unacceptable levels of cross
talk between the signal lines.

In the case when a line of a conventional probe card is
used for power delivery, the high inductance of the probe
can cause significant variations in the voltage levels of both
the bias line and the associated ground connection. Consid-
er, for example, the circuit of Fig. 4, in which the power
line is at a voltage V. If the DUT switches a current I in a
time interval dt, a voltage dV will develop across each of
the probes, temporarily reducing the voltage across the
DUT toV — 2dV. This change in the voltage can be roughly
expressed as:

dv = L l/dt.

For example, when eight drivers are simultaneously
switching 10 mA each in 1 ns, and the probe inductance is
10 nH, the power supply disturbance 2dV will be in excess
of 1.5V.

In addition to the just-described phenomenon, the volt-
age drop developing across the parasitic inductance of the
ground connection again causes the chip’s ground potential
to deviate temporarily from that of the tester. The differ-
ence, known as the ground bounce, is coupled into other
signal lines as unwanted and unpredictable noise.

Microstrip
Transmission
Lines

/ Membrane
Ground \
Plane
Contact
Bumps

Fig. 5. The membrane probe concept.

JUNE 1990 HEWLETT-PACKARD JOURNAL 79

Requirements for High-Performance Probe Cards
Based on the analysis of the present probe-card technol-

ogy and its shortcomings on the one hand, and of the cur-

rent and future needs of the industry on the other, one can
formulate the requirements for the more advanced probe
card that is needed. Since the shortcomings of existing
probes have been identified as pertaining to the areas of
contact density and signal fidelity, it is natural to define
the incremental requirements in the same terms.
Requirements related to contact density include:

u The technology should allow the creation of a large
number of contact points (more than 500).

» The minimum contact pitch, that is, the center-to-center
distance between the closest contact points, should be
as low as 0.004 inch.

= The contact points should have a fixed alignment in the
plane parallel to the wafer under test.

» The contact points should be able to move with respect
to each other in the verical direction to accommodate
normal variations in wafer topography.

Requirements related to electrical performance include:

= The bandwidth of a line should be at least 10 to 20 times
the clock rate of the targeted digital systems (i.e., 2 to 3
GHz).

= A controlled-impedance, reflectionless electrical envi-
ronment should extend from the tester to within at most
1 mm from the I/O pads of the DUT.

= The uncompensated inductance of the contact must not
exceed 0.1 nH.

= The cross talk between adjacent lines should be at least
two orders of magnitude less than in a conventional
probe card of the same density.

The Membrane Probe Concept

The membrane probe is a proprietary wafer probing tech-
nology developed at Hewlett-Packard’s Circuit Technology
R&D Laboratories as a solution to the high-performance
wafer-level test problems described above. The concept of
the membrane probe card is depicted in Fig. 5. As shown
in the illustration, a thin and flexible dielectric film (a
membrane) supports a set of microstrip transmission lines
that connect the DUT to the test electronics. Each micro-
strip transmission line is formed by a conductor trace and
a common ground plane positioned on the opposite side of
the flexible membrane. The conductor traces and the
ground plane are patterned on the membrane using photo-

Force Delivery

Translator Mechanism

Leaf Ring
Spring

I

Interface

R S SR

Multilayer /

Carrier Membrane

Contact
Bumps

80 HEWLETT-PACKARD JOURNAL JUNE 1990

lithographic techniques.

Given the thickness and the material of the membrane,
the width of a signal trace is chosen to obtain the desired
characteristic impedance Z, of the microstrip transmission
line. Typical values of Z, in common use are 50 and 75
ohms.

Contact to the DUT is made by an array of microcontacts
which are plated up at the ends of the transmission lines
through holes in the insulating membrane. The membrane
is operated under low tension in a drumhead configuration
so as to planarize the contact array. The tension in the
membrane is carefully controlled to allow a degree of inde-
pendent motion of the contact points in the vertical direc-
tion, thus accommodating small variations in the heights
of the contacts or in the topology of the device under test.

With regard to the need for higher pin counts and contact
densities, the membrane probe card technology offers a
quantum jump in comparison with the conventional tech-
nology. In the membrane probe, the leads and the contact
points are created by photolitographic means with inhe-
rently high resolution and positioning accuracy. This al-
lows the creation of fine, dense patterns, and makes the
manufacturing process, and ultimately the cost, virtually
independent of the complexity of the pattern.

Since the contact points are fixed on a common carrier
(the membrane), they are fundamentally aligned for life in
both the vertical direction and in the plane of the DUT.
This eliminates the need for probe realignment, which is
an extremely labor-intensive and costly operation in the
conventional technology.

In the area of electrical performance, the membrane probe
technology presents an equally significant advance. The
transmission-line configuration extends all the way to
within 0.1 mm of the DUT’s /O pads, thus providing a
carefully controlled electrical environment in practically
the entire path of the signal. There is very little uncompen-
sated lead inductance to cause waveform degradation or
power or ground potential bounce, or to generate signal
coupling through a common ground inductance.

Furthermore, the presence of a ground plane so close to
the leads concentrates the electric field under the traces,
which minimizes the coupling capacitance between them,
thus greatly reducing cross talk.

Architecture of the Membrane Probe
The architecture of the membrane probe card is shown

Terminations
and Bypasses

L

Fig. 6. Architecture of the mem-
brane probe card.

in Fig. 6. The membrane, configured as described above,
is attached to a printed-circuit-board carrier, which also
carries termination resistors, bypass capacitors, or any
other necessary components. A force delivery mechanism
is mounted on the printed circuit board carrier and is de-
signed to perform three distinct and independent func-
tions:

Apply a force to the microcontacts sufficient to obtain

a low and stable contact resistance.

Activate a scrubbing motion to ensure the removal of

surface insulating layers, including oxides, from the sur-

face of the DUT.

Provide the mechanical degrees of freedom necessary to

ensure continuous conformance of the plane of the mi-

crocontacts to the plane of the DUT.

The required contact force is exerted on the membrane
by the two leaf springs shown in Fig. 6 through a rigid
translator ring attached to the membrane. The primary fac-
tor determining the total force needed is the force per con-
tact, so the total force depends on the number of contact
pads in the DUT and is set by a proper choice of leaf spring
thickness. It was empirically determined that for the selected
bump material to make a low-resistance contact with
aluminum (the most widely used pad material in ICs), the
force per bump must be at least 10 grams. Taking this into
account along with other considerations, the range was
determined to be 15 = 5 grams.

As mentioned earlier, the scrubbing motion of the contact
bumps with respect to the probed surface is of critical
importance to obtaining a low, stable, and repeatable con-
tact resistance, especially with non-noble materials. For
aluminum, the minimal acceptable scrub action was found
to be about 10 micrometers. The upper limit is defined by
the size of the contact pads on the DUT, and for most
practical cases is about 25 um. In the membrane probe, the
scrub action is built into the force delivery mechanism
rather than implemented using external actuators.

The compliance of the probe’s contact points to the sur-
face of the DUT is perhaps the most critical prerequisite
for successful probing. The importance of compliance
stems from the fact that in practical conditions the position
of the probe card in the prober can never be adjusted accu-
rately enough to make it perfectly coplanar with the wafer’s
surface. Even if such an adjustment could be made, every
wafer has a different bow and taper, and therefore presents

1.0+

Contact Resistance (ohms)

a new surface to the probe. It is impractical to readjust the
probe for every wafer.

In the conventional wire probe, compliance is achieved
“naturally” because the long needles are flexible and there
is virtually no mechanical linkage between individual con-
tact points. In the membrane probe, special provisions need
to be made to achieve adequate surface compliance. These
provisions must accommodate two modes of deviation
from coplanarity: a short-range mode and a long-range
mode. The short-range mode consists mainly of variations
in the bump height and in the topography of the DUT. The
long-range mode is a general tilt of the probe’s surface with
respect to the plane of the DUT. The two modes are funda-
mentally independent of each other. The force delivery
mechanism of the membrane probe has been designed to
provide both short-range and long-range compliance with
the DUT surface at every touchdown through indepen-
dently acting micromechanical means.

At the outer edge of the printed circuit board carrier,
connectors are provided to interface with the tester’s per-
formance board. The size and shape of the probe’s printed
circuit board carrier and the type of interface connector
are different for different probe/tester combinations, but
the core remains the same.

Performance of the Membrane Probe Card

The performance of the membrane probe card has been
fully characterized both parametrically and in actual use
at alpha sites. A parametric evaluation is one that is carried
out in the laboratory under controlled conditions, and is
based on special test structures designed for the purpose.
The products of a parametric evaluation are the basic pa-
rameters of the tested probe card. They reflect its intrinsic
qualities, and are independent of the other components
involved (tester, DUT, etc.). Examples of parametric mea-
surements are characteristic impedance and bandwidth.

An alpha-site evaluation is one in which the probe card
is used to test a real IC in a factory atmosphere in conjunc-
tion with all the other components of the test setup. Its
purpose is to verify the probe card’s performance and un-
cover any issues that may occur in realistic conditions.
Parametric Evaluation. The parametric evaluation of the
membrane probe card covered both its dc and its ac prop-
erties. The dc parameters measured were the contact resis-
tance and the current carrying capacity. The ac parameters

}
T
0 10,000

Number of Touchdowns on Aluminum-Coated Wafer

Fig. 7. Contact resistance as a
function of the number of touch-
downs.

|
20,000

JUNE 1990 HEWLETT-PACKARD JOURNAL 81

were the characteristic impedance, the bandwidth, the
pulse rise time, and the cross talk between lines.

Contact resistance was evaluated by measuring the total
resistance between one of the probe card’s lines and an
aluminized silicon wafer, then subtracting the known trace
resistance. Aluminum (as a 1-um-thick film) was chosen
for two reasons. First, it is the most widely used IC metal-
lization, and second, it is the most difficult metal to make
contact with because of its propensity for oxide formation.

A plot of the contact resistance to aluminum as a function
of the number of touchdowns is shown in Fig. 7. As can
be seen, the contact resistance remains low and fairly con-
stant for over 20,000 touchdowns. It then starts to deterio-
rate as oxide debris accumulates on the microcontacts.
After a simple cleaning, however, the low resistance is
restored and the behavior is repeated. An important utility
of this plot is that it defines the cleaning frequency required
to attain stable performance. Membrane probes were found
to deliver low and stable contact resistance for up to 1
million touchdowns when cleaned once every 20,000 cycles.

Current carrying capability of a trace was defined as the
dc current that can be continuously passed through that
trace without an observable change in its appearance. For
a standard signal line the current carrying capability was
found to be about 300 mA and was relatively independent
of trace thickness in the range of 0.5 to 1 oz/ft%. Coinciden-
tally, roughly the same current carrying capability was mea-
sured for the contact between the bump and the wafer’s
aluminum metallization. However, in this case it was de-
fined as the maximum dc current at which no hysteresis
is observed in the VI characteristic curve.

Characteristic impedance measurements were made
using time-domain reflectometry (TDR).2 The TDR profile
of a signal line is shown in Fig. 8. Parts of the plot corres-
ponding to various sections of the circuit are marked: a
50Q) controlled-impedance connector, the trace on the
probe card’s printed circuit board carrier, and the micro-
strip line on the membrane. According to this TDR signa-
ture, taken with a 50-ps system, the characteristic imped-
ance of the line tested is within +10% of the target value
of 50Q.

Transmission response to a 50-ps step function excitation

|
i}

50Q Printed Circuit

| Connector Board Carrier Membran

Reflected Voltage
|
I

Time (200 ps/div)

Fig. 8. Time-domain reflectometry profile and characteristic
impedance.

82 HEWLETT-PACKARD JOURNAL JUNE 1990

was recorded for the same 500 signal line and is shown
in Fig. 9. The 10-t0-90% rise time of the response was
determined to be about 180 ps, a considerable fraction of
which occurs in the 80-t0-90% region.

Bandwidth measurements were made by plotting the fre-
quency response curve of one of the membrane probe card’s
lines. This curve, also known as a Bode plot, is shown in
Fig. 10. The 3-dB bandwidth of the tested line was found
to be in the range of 2.5 to 3.0 GHz.

Cross talk between the probe card’s lines was measured
as a function of frequency, and the results are plotted in
Fig. 11. The measurements were made on a card containing
272 traces, which gives an idea of the spatial density of
the lines in this case. One of the two curves shown is for
adjacent lines, while the other curve is for alternate lines.
At 100 MKz the cross talk is — 45 dB for adjacent lines and
—78 dB for alternate lines. In comparison, a conventional
wire probe card showed adjacent-line cross talk of — 38 dB
at a density less than one third that of the membrane probe
card of Fig. 11.

Alpha-Site Testing. A number of membrane probe cards
were fabricated to test specific chips of various technol-
ogies, I/O counts, pad metallurgies, and functionality. The
testing of these chips was conducted in HP’s wafer fabrica-
tion plants. Below is a brief description of the tests and
their results.

1. Bipolar ECL Flash Analog-to-Digital Converter. This 1.5-
watt, mixed-signal chip with 50 /O pads and gold metalli-
zation was tested at a 10-MHz sampling rate using a
tungsten wire probe card. It was then retested with the
membrane probe card, and the test results were compared.
The superior accuracy of the membrane probe card is dem-
onstrated by Fig. 12. In this plot, the voltage at test point
1, denoted here as Vip1, is recorded for a sample of 120
dice. This voltage is offset from the chip ground by the
drop across a forward-biased junction, and its measurement
is intended to detect variations in the chip’s ground poten-
tial. The results show a progressive deterioration in the
stability of the measurements made with the wire probe
card, while the membrane probe card measurements are
consistent over the entire test.

The accuracy of the membrane probe data was confirmed

1

90% =

Voltage

10%

Il | | | | |
I <t—> | I I I I

Time (200 ps/div)

1

Fig. 9. Transmission response and rise time.

Attenuation (dB)
|
w

-6 : :
0.01 0.1 1 25 10

Frequency (GHz)

Fig. 10. Bode plot and the 3-dB banawidth.

by packaging a number of dice and repeating the measure-
ments on the packaged parts. The spread of the membrane
probe card measurements translates to a contact resistance
stability of better than 5 mQ, which is 40 times better than
that of the wire probe card.

The membrane probe’s ability to make repeated touch-
downs on the same die without appreciable damage to the
pads is illustrated by Fig. 13. For 200 touchdowns the total
variation is less than 1.2 mV, which corresponds to a con-
tact resistance variation of 6 m{). By contrast, using a wire
probe for more than two touchdowns on the same chip
usually causes enough damage to render the pads unbond-
able. This capability is of significant value to chip manufac-
turers, who sometimes lose up to 5% of their chips to pad
and passivation damage.

2. Bipolar ECL Digital-to-Analog Converter. This rep-
resented an at-speed analog test of an industry standard
product using the HP 9840 VHF linear tester and the mem-
brane probe card shown in Fig. 14. The analog output re-
sponse of the device at a 10-MHz clock rate is presented
in Fig. 15 for both the membrane probe card and a conven-
tional counterpart. The rise and fall times are about the

_30 _1_
Adjacent Lines

~ =501
m
s
E 3
s
[
%]
8 Alternate Lines

~70 + \

-90 % a :

10 30 100 300
Frequency (MHz)
Fig. 11. Cross talk.

same at 1.3 and 1.0 ns respectively (they are essentially
determined by the switching characteristics of the device
rather than by the probe’s performance). However, the set-
tling time measured by the membrane probe card is only
9 ns compared with 32 ns for the conventional probe card.
This significant difference is a result of the improved im-
pedance matching in the membrane probe card.

3. NMOS CPU. A membrane probe card was used to test a
32-bit microprocessor at 85°C (Fig. 16). The 8.4-mm-square,
15-watt chip has 272 peripheral aluminum pads arranged
in two staggered rows at an effective pitch of 110 um. This
type of device has very large current transients, and the
stability of power buses is of special concern.

The device was normally tested at speed only after pack-

aging. With the membrane probe card, it became possible
to run the at-speed package test on the wafer for the first
time. Careful membrane layout and close positioning of
over 130 bypass and termination components helped ob-
tain the desired performance.
4. CMOS ASIC. In this alpha-site test, a membrane probe
card was used to test high-pin-count ASICs (application-
specific ICs) before TAB (tape automated bonding) inner-
lead bonding. The probe card addressed 180 gold mesa
bumps, each 75 um square, placed on a 150-um pitch.

One part of the test was designed to evaluate the mem-
brane probe card’s fitness for the specific purpose of prob-
ing bumped wafers. In that part, 600 passes were made on
one wafer, which had about 100 dice. The average contact
resistance variation was found to be less than 13 milliohms,

820 -}—
@ Wire Probe
Membrane Probe
Packaged Device
®
800 +
[]
) ¢ o
@ - &
. @
_®
780+ ° e o
@
& = E] ® ®
& 4
‘F;:‘
£
760+ ®
® ®
2 A\ A~ _ .
[\ ™ /
740 1+ ‘L"‘/
720 + t t t t —
0 20 40 60 80 100 120

Number of Die

Fig. 12. Measurement accuracy.

JUNE 1990 HEWLETT-PACKARD JOURNAL 83

765 1

760

750 +

755+

—Vip1 (MV)

745+

740 1

735 } } }
0 50 100 150

Bl
o

Number of Touchdowns
Fig. 13. Measurement repeatability.

and no significant damage to the gold bumps on the wafer
was observed. Attempts to repeat the same test with a con-
ventional wire probe card failed after only about 5000
touchdowns. The gold bumps on the wafer were severely
damaged, especially at the edges, and the probe needles
went so badly out of alignment that on-site repair was no
longer feasible.

- —0.06

A M,

// \W LSB
/

) l
N
-0.2 iy | -0.07
. ! 0 20
s \
< 04 ——i
_g' - Conversion Clock
o
-0.6 + <——— Analog Output
-0.8 + n {
0 50 100
(a) Time (ns)

Fig. 15. Settling time of the DAC analog output.

Fig. 14. The membrane probe for DAC testing.

One benefit of using the membrane probe card to test
bumped wafers is the probe’s ability to detect individual
short bumps, a commonly encountered defect. Such
bumps, if undetected, would cause assembly rejects at the
subsequent inner-lead bonding step.

Conclusions

An advanced wafer probing technology, the membrane
probe card, has been developed in response to an increas-
ingly acute problem in the IC industry. The technology
allows at-speed testing of high-performance integrated cir-
cuits at the wafer level, and significantly extends the limits
of pin count and density that can be accessed by the IC
test engineer. The new probe card has been fully evaluated,
parametrically as well as in a number of alpha sites.

Acknowledgments

Key members of the membrane probe development team
were Betty Belloli, Sam Burriesci, Brian Elliott, Michael
Greenstein, and Rick Huff. Valuable contributions were
made by Walker Colston, Jack Foster, Frank Perezalonso,
Kazuo Ishii, Hiroshi Sakayori, and Miklos Perlaki. Brian
Leslie managed the effort.

Y + —0.06
I/ 1
| M LSB
/
°T = + -007

=021 0 10 20
— ~——
2z
5— —0.47 - Conversion Clock
3
o

<——— Analog Output

|

2

@
1

]]
T L

0 50 100
(b) Time (ns)

(a) Conventional probe card. (b) Membrane

probe card

84 HEWLETT-PACKARD JOURNAL JUNE 1990

References

1. R. E. Mattick, Transmission Lines for Digital and Communica-
tion Networks, McGraw-Hill, 1969, p. 191.

2. B. Oliver, “Time-Domain Reflectometry,” Hewlett-Packard
Journal, Vol. 15, no. 6, February 1964, pp. 1-7.

Additional Reading on the Membrane Probe:

3. B. Leslie and F. Matta, “Membrane Probe Card Technology
(The Future for High Performance Wafer Test),” Proceedings of
the 1988 IEEE International Test Conference, pp. 601-607.

4. B. Leslie and F. Matta, “Wafer-Level Testing with a Membrane
Probe,”” Design and Test of Computers, February 1989, pp. 10-17.

Fig. 16. The membrane probe for microprocessor testing.

JUNE 1990 HEWLETT-PACKARD JOURNAL 85

Authors

June 1990

6 —— HP OSF/Motif _—_ . —

Axel O. Deininger

Making computers more in-
| tuitiveandfuntouseisthe

| professionalinterest of Axel
Deininger, a software de-
sign engineer who joined
HP in 1982. He was HP's
technical representative to
OSF for user interfaces, the
architect for defining OSF/
Y EAA A o Motif behavior, and
coauthor of the style guide for the HP OSF/Motif
product. He was a Learning Products project
leader with the X Window Systems marketing de-
velopment team at HP, and a manufacturing sys-
tems manager. Currently, Axel is investigating en-
hanced typographic capabilities for the X server.
Before joining HP, he was an information systems
specialist with Hughes Aircraft Company in El
Segundo, California, and a systems analyst with
Marsh & McLennan in Seattle, Washington. He has
written HP manuals on X systems, the HP Vectra
CS, HP Integral personal computers, and HP cal-
culators. Born in Potsdam, East Germany, Axel re-
sides with his wife in Corvallis, Oregon. He enjoys
hiking, gardening, and traveling around the Pacific
Northwest.

Charles V. Fernandez

After joining HP in 1988,
learning products engineer
Charles Fernandez co-
authored the OSF/Motif
styleguide and the HP OSF/
Motif styleguide, and
helped document the X
Window System and re-
lated products. Charlie re-
ceived aBA degree (1972)
in English from the University of Detroit, an MA
degree (1975) in English from the University of Ore-
gon, and a journeyman carpenter certificate (1978)
from Carpenter College in Adair Village, Oregon.
Currently, he is the documentation project leader
for the HP Visual User Environment (VUE). His pro-
fessional interests include user interface design,
on-line help and documentation, and minimalist
hard-copy documentation. Charlie is the author of
articles on fly-fishing, a member of the Federation
of Flyfishers, and the Mid-Valley Chapter co-pres-
ident of the Society for Technical Communication.
Born in Gloversville, New York, he is married and
lives in Eugene, Oregon. His hobbies include fly-
fishing, science fiction writing, reading detective
stories, camping, and cross-country skiing.

86 HEWLETT-PACKARD JOURNAL JUNE 1990

12 —— HP OSF/Motif Window Manager

Keith M. Taylor

As a software development
engineer, Keith Taylor was
amember of the engineer-
ing team for the HP window
manager and HP OSF/Motif
products. A graduate of

. Oregon State University
with aBS degree (1978)in
electrical engineering, and
Stanford University with an
MS degree (1989) in computer science, he joined
HPin 1981 in Corvallis, Oregon. Keith also worked
on the Microsoft Windows driver for the portable HP
Vectra CS, on Microsoft Multiplan for the HP Inte-
gral personal computer and HP Series 200 comput-
ers, and on HP Word/80 for the HP Series 80 com-
puters. He is now working on a new version of HP
OSF/Motif window manager. Before joining HP, he
designed software for real-time command and con-
trol systems for GTE in Mountain View, California.
Keith is a member of the ACM, the IEEE, and the
IEEE Computer Society. His professional interests
include user interface software and issues related
tothe UNIX community. He served inthe U.S. Army
Military Police. He is active in civic affairs as a
member of the Corvallis Citizens Advisory Commis-
sion on Bicycles. Born in Honolulu, Hawaii, Keith
lives with his wife and two children in Corvallis. He
enjoys swimming, bowling, bicycling, reading, and
watching off-beat movies.

Brock C. Krizan

Soon after graduating from
the Massachusetts Institute
of Technology with BS and
MS degrees in computer
sciencein 1977, Brock Kri-
zan joined HP’s General
Systems Division. He was
asummer co-op student at
HP's Data Systems Division
sl forfouryears priorto joining
HP full-time. He was a member of the HP window
manager and HP OSF/Motif window manager
development teams. Brock worked on a microcode
assembler for the HP 3000 system, an HP 2100
data communications driver, and an HP 300 data
communications package. He provided quality as-
surance support for the HP Series 80 computer and
developed the HP Personal Application Manager
(PAM) for the HP Integral personal computer and
HP 9000 Series 300 computer. He was a member
of the initial X development team at HP, and de-
veloper of an X-based emulator package for an HP
proprietary window system. He is now a project
manager for system user interface components
such as the HP OSF/Motif window manager. His
professional interests include user interface soft-
ware and artificial reality. Brock authored a previ-
ous HP Journal articie on the PAM screen for the
HP Integral PC. Bornin Yonkers, New York, he lives
with his wife and two daughters in Corvallis, Ore-
gon. His hobbies include mountain biking, cross-
country skiing, white-water canoeing, hiking, and
fine art appreciation.

Benjamin J. Ellsworth

Sailing and furniture mak-
ing are the hobbies of Ben-
jamin Ellsworth, an R&D
software engineer who
helped design the HP OSF/
Motif widget product. He
joined HP in 1985, shortly
after graduating magna
cum laude from Brigham
Young University with a BS
degree in computer science and statistics. In the
past, Benjamin worked on HP common X interface
widget development and CAEE ASIC vendor sup-
port. Before joining HP, he performed data com-
munications test work for IBM in San Jose, Califor-
nia. He is the author of two technical articles on the
HP common X interface. His professional interests
include computers and human interaction. Benja-
min lives in Corvallis, Oregon.

—

Donald L. McMinds

Don McMinds is the

| documentation project

_ leader for the X Window
System portion of the HP-
UX Release 8.0 operating
system. He joined HP in
1982 as a programmer-
analystin MIS. In 1986, he
became a learning prod-
ucts engineer and wrote
the HP Basic Programmer’'s Manual, the HP Vectra
CS Service Manual, and many other user’s manuals
for HP Vectra peripheral equipment. He received
aBSdegree (1964) in engineering, and an MA de-
gree (1973) in management from the University of
Nebraska. During a 23-year careerinthe U.S. Air
Force, Don served as a Titan Il missile crew com-
mander and in staff positions at the Strategic Air
Command (SAC), North American Air Defense
Command (NORAD) headquarters, and at Military
Airlift Command (MAC) headquarters. He retired
as alieutenant colonelin 1982. Born in Wenatchee,
Washington, Don lives with his wife in Corvallis,
Oregon. He has twin daughters who are both
sophomores in college. His hobbies include rac-
quetball, ham radio (licensed since 1963), model
railroads, and fly-fishing and fly-tying.

Martin R. Cagan
T As a project leader with
HP's Software Engineering
Systems Division, Martin
Cagan helped develop the
HP SoftBench system.
Marty joined HP in 1981 as
a software engineer and
worked on commercial ap-
plications and environ-
ments for the HP 3000 com-
puter. He also developed software tools, including
the HP Al workstation, as a project leader and man-

ager at HP Laboratories. He earned a bachelor of
science degree in computer science in 1981 from
the University of California at Santa Cruz. Marty,
whose professional interests include application in-
tegration and software development environments,
recently left HP to join a CASE company in San
Francisco.

Colin Gerety

After joining HP in 1985 in
Fort Collins, Colorado, soft-
ware development en-
gineer Colin Gerety
developed the HP
SoftBench editor, remote
data access, automatic
menu generation, and
dialog box handling sys-
' tems. He also worked on
HP Common L|sp and expert system shell investi-
gations. He is named a coinventor on two patents
pending for HP SoftBench—execution manage-
ment and the broadcast message server. Colin
earned a bachelor's degree (1979) in music at the
University of New Mexico and a master of science
degree (1988) in computer science from Oregon
State University, with a focus on truth maintenance
systems. Colin was bornin New Haven, Connect-
icut, and he and his wife and four children reside

in Fort Collins, Colorado. His hobbies include
music, bicycling, and studying human society.

Brian D. Fromme
Brian Fromme designed
and developed the HP
SoftBench subprocess
control facility and the HP
Encapsulator as a software
development engineer with
HP’s Software Engineering
Systems Division. Earlier,
. he developed a compiler
| . for HP Business BASIC/
3000 and, at HP Laboratones, he worked on Lisp
compiler technology and ported Lisp to HP Preci-
sion Architecture. Currently in sales development,
Brian joined HP in 1983. He has also worked in soft-
ware development at the Atrtificial Intelligence
Centerof SRl International. A graduate of the State
University of New York College at Brockport, he
earned bachelor of science degrees (1982) in com-

puter science and mathematics. He is named an
inventor in a pending patent for the HP Encap-
sulator. Brian volunteers teaching time to schools
through the HP Visiting Scientist Program near his
home. He was born in Rochester, New York, and
he and his wife and two children live in Fort Collins,
Colorado. He enjoys all sports and plays baseball,
football, and basketball.

69 —_ Particle Beam LC/MS

Robert G. Nordman

Sl A project manager for the
HP 59980A particle beam
interface for LC/MS, Bob
Nordman has worked on a
variety of HP products
since he joined the com-
panyin 1969. He was ade-
velopment engineer for the
HP 7970A tape unit, HP

y 7920A disc drive, HP

2644A termmal, and HP 8450A diode array spec-
trophotometer. He was a project leader for the
mechanical portion of the HP 8451A diode array
spectrophotometer and a project manager for the
HP 8452A diode array spectrophotometer. Bob is
named an inventor in three patents on tape drive
technology and one on the particle beam system.
Before joining HP, he helped design mechanisms
for aerial cameras for Hycon Manufacturing Com-
pany, computer peripherals for Burroughs Corpo-
ration, home appliances for Fisher & Paykel (New
Zealand), and computer peripherals for Bell &
Howell Corporation. He received his BSME degree
(1951) from the Massachusetts Institute of Technol-
ogy, and his MS degree (1973) in engineering from
Stanford University. A first lieutenant in the U.S. Air
Force from 1951 to 1953, Bob was born in New York
City, and he and his wife now live in Palo Alto,
California. He has three sons and three grand-
daughters, and enjoys letterpress printing, garden-
ing, reading, and playing guitar.

James A. Apffel, Jr.

Since joining HP in 1983,

w Alex Apffel has helped de-
- velop the HP particle beam
« LC/MS system and the HP
AminoQuant amino acid
analyzer. After earning a
bachelor of science degree
. (1978) at the University of
| ./ HawaiiatManoaandaPhD
2 / . degree (1981) at Virginia
Polytechnic Institute, and after completing post-
doctoral studies (1981-83) in analytical chemistry
at the Free University of Amsterdam, Alex joined
HP in Waldbronn, West Germany. He has pub-
lished ten technical journal articles on chromato-
graphic methods, and is named an inventor in pat-
ents on amino acid analyzer chemistry and auto-
mated precolumn derivatization. Before joining HP,
he worked as an applications chemist for Varian
Associates. Alexis amember of the ACS and the
ASMS. Born in Coronado, California, Alex is mar-
ried and lives in New Aimaden, California. He en-
joys skiing, reading, and working with personal
computers.

77 __Membrane Probe Card

Farid Matta

As an R&D project leader
in the HP Circuit Technol-
ogy Group, Farid Mattawas
involved in the develop-
ment of the membrane
probe technology. He has
also served as process en-
gineering manager for
CMOSIC production and is
now working on advanced
TAB packaging as an R&D project manager. He
joined HP in 1981. Farid is an author or coauthor
of 20 technical publications on IC processing, test-
ing, and packaging, and is coauthor of a book on
electrical contacts and interconnects published in
the USSR in 1974. He is named an inventor in a
number of patents issued or pending on IC testing
and packaging, and is amember of the IEEE and
the CHMT. Before joining HP, he worked on bipolar
IC fabrication at Advanced Micro Devices in Sun-
nyvale, California, and was an assistant professor
atthe Institute of Electronics in Menouf, Egypt. He
received his BSEE degree (1965) and his PhD de-
gree (1972) in microelectronics from the Leningrad
Institute of Electrical Engineering. Farid was born
in EIMenya, Egypt, and lives with his wife and son

in Mountain View, California. He enjoys painting, art
history, and hiking.

JUNE 1990 HEWLETT-PACKARD JOURNAL 87

Hewlett-Packard Company, 3200 Hillview Bulk Rate
Avenue, Palo Alto, California 94304

Postage

ia

Hewlett-Packard

ADDRESS CORRECTION REQUESTED

Company

HEWLETT-PACKARD JOURNAL

00199127 -
MR. GEORGE PONTIS
SUITE 409

1742 SAND HILL RD
PALO ALTO CA 94304

CHANGE OF ADDRESS: iai 50 inion Avenus. raio Al ch 54504 US A

m our mailing list
Journal, 3200 Hillview Avenue, Palo Alto, CA 94304 U.S.A. Include your olc

your request to Hewlett-Packard

s label, if any. Allow 60 days

5953-8581

HP Archive

This vintage Hewlett-Packard document was
preserved and distributed by

www.hparchive.com

Please visit us on the web!

The HP Archive thanks George Pontis
for his contribution of this material.

On-line curator: John Miles, KE5FX
jmiles@pop.net

