
HEVI/LETT.PAGKAFID

-,@[JRNTAL JUNE 199Cl

pd !:8',ifJJ

HEVT/LETT-PACKAFID

-,@L'RNTAL June 1990 Volume 41 . Number 3

Articles

A Making Computer Behavior Consistent: The HP OSF/Motif Graphical User Interface
V by Axel O. Deininger and Charles V. Fernandez

I OSF/Motif

.1 11 The HP OSF/Motif Window Manager, by Brock C. Krizan and Keith M. Taylortz
23 Interclient Communication Conventions

rtl1f Programming with HP OSF/Motif Widgets, by Donald L. McMinds and Benjamin J.
lO errciro,tn

27 The Evolution ol Widgets

11 2t The HP SoftBench Environment: An Architecture for a New Generation of Software
1)O fools, by Martin R. Cagan

37 Architectural Support tor Automated Testing
39 Broadcast Message Server Message Structure
40 Distributed Execution, Data, and Display
41 Schemes: Intertace Consistency
42 Pervasive Editing in the HP SoftBench Environment
43 Native Language Support
45 Mechanisms for Efficient Delivery
46 Application of a Reliability Model to the HP SoftBench Environment

I

48
^ New Generation of Software Development Tools, by Cotin Gerety

49 Development Manager
51 Program Editor
52 Program Buildel
54 Static Analyzer
55 Program Debugger
57 Integrated Help

Editor, Richard P. Dolan o Associate Editor, Charles L. Leath o Assistant Editor, Gene M. Sadoff . Art Director, Photographer, Arvid A. Danletson
Support Supervisor, Susan E. Wright o Administrative Services, Diane W. Woodworth . Typography, Anne S. LoPrest . European Production Supervisor, Sonia Wirth

2 tEwrerr-pncxnRD JoURNAL JUNE 1990 O Hewiett-Packard Comoanv 1990 Printed in U.S.A

5g "t
Encapsulator: Bridging the Generation Gap, by Brian D. Fromme

65 HP Encapsulator CASE Case Study

6 g
Introduction to Particle Beam LC/MS. by James A. Apftel, Jr. and Robert G. Nordman

Resei l rch Reprlr l

aa Advances in lC Testing: The Membrane Probe Card, by Farid Matta
I I

Depar tmenls

4 In this lssue
5 Cover
5 What's Ahead

86 Authors

The Hewlett-Packard Journal is published bimonthly by the Hewlett-Packard Company to recognize technical contributions made by Hewlett-Packard (HP) personnel. While
the intormation found in this publication is believed lo be accurate, the Hewlett-Packard Company makes no warranties, express or implied, as to the accuracy or reliability of
sUchinformation.TheHew|ett.Packardcompanydisc|aimsa||warrantiesofmerchantabi|ityandfitnes|orapaicUlarpurpose
including bul not limited to indirect, speial, or consequential damages, attorney's md expert's fees, and 6urt costs, arising oul ot or in connection with this publication.

SubscriPtions: The Hewlen-Packard Journal is distributed free of charge to HP research, design, and manufacturing engineering personnel, as well as to qualified non-Hp
individuals,| ibraries,andedU€tiona|institUtions.P|easaddressubscriptionorchangeofaddressrequestson
on the back cover that is closest to you. When submitting a change ol address, please include your zip or postal mde and a copy ot your old label.

Subm|ssions: Although articles in the Hewlett-Packard Journal are primarily authored by HP employees, anicles trom non-HP authors dealing with HPielated research or
slutions to lechnical problems made possible by using HP equipment are also considered for publicalion. Please mntact the Editor betore submitting such articles. Also, the
Hew|ett.PackardJourna|encoUragestechnica|discussionsofthetopicspfesentedinre@ntartic|esandmaypub|ishlettersexpectedtob
be briet, and are subject to editing by HP.

Copyright O 1990 Hewletl-Packard Company. All rights reserved. Permission to copy without tee all or part of this publication is hereby granted provided that 1) the copies
are not made, used, displayed, or disldbuted for mmmercial advantage; 2) the Hewlett-Packard Company copyright notice and the title ol the publication and date appear on
the copies; and 3) a notice stating lhat the mpying is by permission ol the Hewlett-Packard Company appears on the copies. OtheMis, no portion ol this publication may be
producedortransmittedinany'ormorbyanymeans,e|ectronicormechanica|,inc|udingphoto@pying,rmrding,orbyanyinformationstorageretrieva|systemwithoutwrien
permission of the Hewlett-Packard Company.

Please address inquiries, submissions, and requests to: Editor, Hewlett-Packard Journal, 32OO Hillview Avenue, Palo Atto, CA 94304, U.S.A.

JUNF 1990 HFWI ETT pACKARD JouRNAl 3

In this Issue
We didn't plan it that way, but two groups of articles in this issue deal with
the design of software to make user interaction with computers simpler, more
consistent, more intuitive, more standard, more foolproof. One group of
articles describes a standard graphical user interface and the other describes
an environment that provides a consistent user interface for software develop-
ment tools. Since we didn't do anything special to get these two packages
into the same issue, their simultaneous appearance---close on the heels of
the HP NewWave Offic*is simply further evidence of the attention that
user friendliness is receiving in the R&D community.

The graphical user interface is called OSF/Motif. lt's the first product of the Open Software
Foundation, an international organization created by leading computer companies to promote
open software standards-standards that make it easier for users to mix and match applications
and computers from different suppliers. Based on technology from Hewlett-Packard and Digital
Equipment Corporation, OSF/Motif provides consistent behavior between personal computers
and engineering workstations and an enhanced 3D appearance that makes buttons look as if
they've been pressed when the user selects them. HP's implementation of the OSF/Motif graphical
user interface is described in the three articles on pages 6 to 35. The first article discusses HP
OSF/Motif concepts and external behavior. The other two articles discuss the two main HP
OSF/Motif components: the HP OSF/Motif window manager and the HP OSF/Motif widgets. The
widget library is a programmer's toolkit that makes it easy to develop applications that have the
OSF/Motif graphical user interface.

The software development environment is called the HP SoftBench environment. lt provides
software developers with a unified, consistent intedace to the computer-aided software engineering
(CASE) tools they most often need. Tools included in the HP SoftBench product are a program
editor, a static analyzer, a program debugger, a program builder, and electronic mail. Using an
HP SoftBench component called the HP Encapsulator, other tools can be added to the environment
and HP SoftBench tools can be replaced with other tools. Provided that they meet certain minimum
requirements, encapsulated tools don't have to be modified at all. The HP SoftBench environment
is designed to support development teams in distributed computing environments. lt can be
customized to conform to local organizational, team, and personal processes, and any tool can
execute on any computer in the user's network. The HP SoftBench user interface follows the
OSF/Motif appearance and behavior. (Because of the small size of the screen images shown in
the articles, the 3D appearance isn't apparent there, but you can see it on the cover.) The HP
SoftBench tool integration architecture is described in the article on page 36. The HP SoftBench
CASE tools are explained in the article on page 48, and the HP Encapsulator is the subject of
the article on page 59.

4 HEWLETT-pAcKABD JoURNAL JUNE 1990

"Hyphenated techniques" is a name chemists use to refer to certain combinations of analytical
techniques. One of these is liquid chromatography/mass spectrometry, or LC/MS. The constituents
of an unknown sample mixture are separated by a liquid chromatograph, and a mass spectrometer
is used to identify and measure the concentration of each constituent. lt's not entirely straightfor-
ward. An interface is needed between the two instruments to control the flow rate and rJroue
the solvent that carries the unknown through the chromatograph. While several interface tech-
niques have been tried, none has been completely satisfictory. However, the relatively newparticle beam interface looks good. lt is applicable to a wide range ot compounds and produces
gqectra that have high information content. The article on page 69 introduces us to particle beam
LC/MS' describes the design of HP's particle beam interfacel and presents performance data for
the HP system.

Equipment for testing integrated circuits at the wafer stag+-before the individual chips are
separated-typically consists of an automatic test system, a prober, and a probe card. For iesting
high-pin-count or high-speed devices, conventional probe card designs just don't work reliably ii
factory conditions. The paper on page 77 presents the results of research aimed at developing
an alternative. HP's proprietary membrane probe technology replaces the conventionat pioo6
card and its needle probes with a thin, flexible dielectric litm supporting a set of microstrip
transmission lines that have microcontacts at their ends. Complex, high-density contact patterns
are easily lormed photolithographically. Contact resistance was found to remain low and stable
for up to a million touchdowns with only a simple cleaning every 20,000 cycles. The paper presents
performance results from alpha-site tests.

R.P. Dolan
Editor

Cover
An HP softBench window environment, showing the osF/Motif 3D appearance.

What's Ahead
The August issue will contain about one third hardware design and two thirds software design.

The hardware consists of the HP 8130A 300-MHz, variable-transition-time pulse generator a-nd
the HP 8'l 31 A 500-MHz pulse generator. The software is HP's implementation of the flanufacturing
Automation Protocol. MAP 3.0.

JUNE 1 990 HEWLETT PACKARD JoURNAL 5

Making Computer Behavior
Consistent: The OSF/Motif Graphical
User Interface
Window-oriented user interfaces provide knowledge
workers with powertd bols to control their computer
environments and increase productivity The osFlMotif
graphicat user intertace provides sfandards and tools to

ensure consistency in the appearance and behavior of
apptications running in the X Window System'

by Axel O. Deininger and Charles V. Fernandez

r MAGINE THE PROBLEMS IT WOULD CAUSE the driv-

I ing public if there were no standards for the location of

I the b.ake and gas pedals on an automobile. Fortunately,

the auto industry has standards for the location of certain

items that are critical for the operation of an automobile'

In the computer industry, standardization and consistent

behavior of the user interface for computer applications is

not yet a reality. User interfaces defining how people and

computer programs communicate with each other still dif-

fer from one application to another.

Inconsistent user interfaces make it much more difficult

for users to learn and operate different applications' This

problem is accentuated in multitasking operating systems

such as HP-UX, whose appeal includes the ability to run

several programs at once. The cost of such inconsistency

is more than iust a little frustration for computer users'

Inconsistency causes users to be hesitant or to avoid using

or purchasing new computer applications, thereby causing

losl .errenues to application vendors, and possibly lost pro-

ductivity because the new applications might enable tasks

to be done more quickly and efficiently'

Hewlett-Packard's efforts in developing and promoting

a cooperative computing environment are based on an in-

terest in industry standards that support a consistent user

interface. HP's adoption of the UNIX* operating system as

the basis for the HP-UX operating system and early support

for industry standards such as the X Consortium and the

Ooen Software Foundation (OSF), are examples of HP's

l+ Resiz ing +l

I

l lou i ng

Po in t ing

It

interest in this area. The X Window System" from the

Massachusetts Institute of Technology has been available

on HP-UX systems since 1988, and the OSF/Motif graphical

user interface, completed for OSF in 1989, is now available

on HP-UX 7.0. The OSF/Motif user environment is based

on HP's graphical user interface CXI (common X interface)'

See the box on page B for more about OSF.

This article describes some of the concepts and external

features provided by the OSF/Motif graphical user inter-

face. The articles on pages 12 and 26 describe the two main

components of the OSFIN'Iotif user interface: the OSF/Motif

widgets and the OSF/Motif window manager.

Concepts for Gonsistent Behavior

The following concepts are essential for designing a con-

sistent user interface:
r An object-action design model that is universally applied

and simple to understand
r Direct manipulation of objects with immediate and con-

sistent visual cues for feedback
3 Tools that are consistent enough to ease the learning

burden of novice users, yet flexible enough to allow ex-

perienced users to take shortcuts.

The obiect-action selection model means that the user

first selects an object and then selects an action to perform

on that obiect. Standard controls such as menus and push-

TheXWindowsys temisa t radernarko f theMassachuset ts |ns t tu teo lTechno|ogy
UNIX s a registered trademark ot AT&T in the U'S A and in other countr es

T

*.

r k i

tr Fig. 1. Different Pointer shaqes
that provide vlsua/ cues tothetype
of activity.

6 lewren PAoKABD JoURNAL JUNE 1990

1.lo ng

buttons represent the selections. The objects typically rep-
resent a real-life metaphor that the user is familiar with.
For instance, in the HP NewWave Office,l the objects in_
clude file cabinets, folders, and documents. Consistent be-
havior implies that the set of controls and objects will
always operate in the same way.

Direct manipulation with visual feedback means that the
user is provided with a response that somehow represents
the action taken, and it is done in real time. For example,
when a button on the display is selected, the visual feed_
back might be that the button appears to be pressed in.
Real-time feedback implies that the manipulation of obiects
on the display is synchronized with the motions of the
device (mouse and buttons) being used to perform the man-
ipulation. For example, the events on the display should
not lag behind the motion of the mouse.

Consistent behavior does not eliminate individualitv. nor
does it imply rigid conformity. Much flexibility exists
within consistent behavior for application developers to
present their applications in the best possible Iight. Novice
users typically make a menu selection by displaying the
menu, reading the selections, and then clicking the mouse
over the item they want. Experienced users make selections
using a quicker method, such as entering a one_letter
mnemonic or bypassing some menu levels. The specific
controls such as pushbuttons and scroll bars do nor repre_
sent a finite set, but rather a basic, core set that is expeited

:""il:*" "r,echnology
changes and users gain more experi-

Tools for Knowledge Workers
To be productive using a computer, knowledge workers

must have tools that enable them to communicate with and
economize control over the programs running on the com-
puter. The two most common tools for this purpose are the
traditional typewriter-style keyboard and a pointing de-
vice-usually a mouse.
Standard Mouse Techniques. Traditionally, control over
the computer has rel ied on the user's abi l i ty to type. This
is being rapidly replaced by the use of point ing devices
such as the mouse. A mouse enables the user to control
most operations using three actions:
r Pointing. Positioning the mouse pointer over an object.

This signals a possible interest in that obiect.
r Clicking. Pressing and releasing a mouse button selects

the object. Double-clicking, or clicking a mouse button
twice in rapid succession, selects an obiect and then
performs the designated default action on the object.

r Dragging. Pressing the mouse button and moving the
pointer enables a user to move objects, select a range of
objects, or browse a menu (depending on the context of
the situation).
The shape of the mouse pointer indicates the current

operations taking place in the user interface environment.

Fig.2. A typical window environ-
ment.

JUNE 1990 HEWLETT_PACKARD JOUBNAL 7

poi.nting
evice than a free-noaning mouse.

s3)A l,lIND0l,l 0N THE tl0RLI)

rputers, Each uindou displags a separdte vi
rEllasKlng envlronment. a person can have n;

ating dt the same time. l l i th netuorked X

urnoous can shou activitg on a different

lgure screen PCL entitq=rootprx)
Tgpical l l indoued Envrronment^

ured2, FI LE " /doc./l'1enge,/beg i nne\
o t lPc t J
FILE ",rdoc/Her9e./beginnens/gra\

l i ke p reces o f rs FILE "T'usenslcharl ielgraphi\

ns FILE "T'usens/$rarl ielgraphi\

ld u indou
le pnocess

du l t cho i .ce (se lec t ion)

Many pointer shapes are possible. Each shape is visually

d"r".iitin" and pr-ovides an important visual cue about the

operational state of the interface. Fig' 1 illustrates some

common pointer shaPes.
By using the modifier keys Shlft and cTlL il combination

with the -orrr", the user can select a single choice, several

choices, a contiguous range of choices, or a noncontiguous

range of choices.
Keyboards. A typewriter-style keyboard may be the tradi-

tionat tool for computer users, but graphical user interface

environments like OSF/lvfotif do not require users to be

keyboard experts or to learn the arcane syntax of traditional

command-line interfaces.
Although the tools of a graphical user interface such as

the mouse are easier to use, keyboards remain the most

efficient tool in some cases, particularly for text entry. Also,

a number of keyboard alternatives exist. Arrow keys can

emulate mouse movement and can be just as fast as a mouse

when only a few objects are on the screen, or when the

user's hands are already on the keyboard. Single-letter
mnemonics and keyboard accelerators for commonly used

commands also show that the keyboard is still a useful

OSF/Motif

The Open Software Foundation (OSF) is a group of the leading

companies in the computer industry organized to promote open

software standards. The foundation ls incorporated as a non-

profit, industry-supported research and development organiza-

tion that has the responsibility to provide software that makes it

easier for users to mix and match computers and applications

from different suppliers by addressing the following needs:

r Portability. The ability to use application software on computers

from multiple vendors.
r Interoperability. The ability to have computers irom different

vendors work together.
r Scalability. The ability to use the same software environment

on many classes of computers' lrom personal computers to

supercomputers.
ln response to OSF's request for user inter{ace technology' 39

companies including HP presented their vtsrons of the future of

computing. HP's vision of a common X interface (CXl) that united

the behavior of Presentation Managef in the personal computer

world with the power o{ workstations in the UN|X-system world

was chosen as the basis upon which to build an OSF user inter-

face standard.
OSF awarded HP a contract to develop and document a CXI-

based user interface. This became the OSF's first product, the

OSF/Motif user interface. Like CXI' the OSF/Motil user interface

is based on a three-dimensional appearance and the behavior

of Presentation Manager, which is a standard graphical user
*Presentation [/anager is a product of N'licrosoft Corporation

interJace of the personal computer world. The OSF/Motif product

includes a style guide that defines a common user interface

behavior consistent with Presentation Manager, a window man-
ager to control graphical objects on the display screen, a software
toolkit of widgets and intrinsics with which to build applications,
and a user interface language to speed application prototyping.

The article on page 1 2 describes the OSF/Motif window manager,

and the article on page 26 describes the OSF/Motif widgets
The OSF/Motif user interface is the most visible piece of what

will become a complete OSF/Motif user environment. lt thus plays

a major role in making the applications that run on UN|X-system-
based systems more user friendly. The OSF/Motif environment
enables users to operate their computers with graphical controls
like pushbuttons, windows, and menus. Where once users had

to memorize dozens of obscure commands and type flawlessly,
now they need only point with a mouse and click a button.

Fig. 1 shows the interactions between the window manager

and a client application. The X Window System is an accepted

standard in the UN|X-system world and is the platform for the

OSF/Motif widgets and intrinsics. The OSF/Motif window manager
provides the Presentation Manager appearance and behavior

characteristics for applications. Because OSF/Motif follows a

technology standard, users need no longer ponder issues of
hardware and software compatibility. Because OSF/Motif follows

a behavior standard, users need not learn multiple command
sets to control applications. Once they understand direct manipu-

lation, they can control any program.

Initiates KeYboard
and Mouse Evenls

Interprets Events bY:
I Acting on Management Events
r Passing Application Events to

Applicaiions
r Returning Application Responses

to the User Acts on ApPlication
Events and Passes
Responses to the window--
Manager

Fig, 1. I nteractions between some
of the components in the OSFI
Motif hierarchy.

8 newrerr-pncxnRD JoUBNAL JUNE 1990

interface tool.
Special Tools. The keyboard and mouse are by no means
the only tools available. Consistent behavior supports the
use of many tools for just about all occasions. Hewlett-pack-
ard's Human Interface Link (HP-HIL) provides many inter-
face tools for computer users. Which tool is used depends
on the application and the user. For example, a mouse
might not be appropriate as a pointing device in all cases.
If the application is a computer-aided design (CAD) appli-
cation, perhaps a graphics tablet or light pen might be a
better choice. If the situation is such that a minimum of
desk space exists, perhaps a track ball would be a better
choice as a pointing device than a free-roaming mouse.

Windows
Windows are the means by which users view the world

inside their computers. Each window displays a separate
view. In a multitasking environment, a user can have many
windows operating at the same time. With networked X
Window System technology, each window can show activ-
ity on a different computer, even a computer thousands of
miles away. Fig. 2 illustrates a typical window environ-
ment.

Like most work areas, a window environment is not im-
mune to disarray. Indeed, with remarkably little effort, the
workplace (display) can easily become cluttered to the
point of distraction. Windows typically overlap like pieces
of paper on a desktop. New windows open on top of the
stack, partially obscuring older windows lower in the stack.

There are a number of ways to organize the work area.
Controls are present on the window frames for the conve-
nience of mouse users. Fig. 3 shows the layout of a typical
window in the OSF/NIotif window manager environment.
Windows can be moved out of the way by dragging the
title bar. The window frame itself is not iust a border; when

Maximize

Minimize

Resize -+
Border

Fig. 3. Ihe frame of a window in
the OS F I Motif e nvi ronment.

grabbed by the mouse, the border stretches or shrinks to
resize the window.

When moving or shrinking a window is not enough to
get it out of the way, the window can be turned into a
graphical icon by clicking on the minimize button in the
window frame. The icon saves space on the screen without
halting the application running in the window. This is
analogous to a person putting a clock in a desk drawer-the
clock still works, it's just out of the way.

To give a window undivided attention, the user can click
on the maximize button in the window frame. This will
enlarge a window to its maximum size and will often cause
it to cover the entire screen. This is a useful feature for
complex CAD design.

Menus
Consistent behavior provides a number of ways for users

to control the windows in their work areas. The idea is
that no one way will be correct for everyone, so by building
flexibility into the environment, users can pick a way to
manage windows that best fits the situation. To help pro-
vide this flexibility, every window has a window menu.
Users can display a window menu either by clicking the
left mouse button with the pointer positioned over the
window menu icon for that window, or by pressing Shift
and esc simultaneously. If the window menu is hidden,
it can be revealed with the click of a mouse button.

The window menu shows all of the window management
commands available for a window. Fig. 4 shows the con-
tents of the default menu for the OSFA,Iotif window man-
ager. This menu duplicates the commands embedded in
the window frame and may provide different commands
as well. To initiate an action from the menu, the user po-
sitions the mouse pointer over the desired selection and
clicks the left mouse button. For kevboard-oriented selec-

Window Menu Resize
Border

Title Bar

+-
I

client Area _+

I

JUNE r990 HEWLETT-PACKAFD JoURNAL I

Ie to organize their tror'k a\

fnames for the convenience \

of a tgpical r,rindow* PeoP\

the title bar. The r,rindor,r \

bU the mouse, the bor der s\

figure nonumber Pf,L
l,lindor'r Frarne l,lith

entitg=sgsmenu)
Standat'd Sgstem I'lenu.

Fig. 4. A window showing a win-
dow menu.

Fig.5, A typical aPPlicatton matn
wtnoow.

10 rewrrrr'pecxAnD JoUBNAL JUNE 1990

Ent e r

f l e a s u r e m e n t s

I e s h e e t t r l u s E :
l i Bo ld
l i /+o l i c
J Under l ine

Le f t : I I
Ri sht ' l-l

Top : l ' 5 |
Bo t t om:

S Inch
y f e n t i n r e t e r

1z F i ca

\ . / F o i n t s

Reset l Cence l l Hetp

Texl Entry Box Radio Buttons

option Menus

tion, the user can type a one-character mnemonic.
Mnemonics are the underlined characters in a menu entry
(see Fig. 4). Typing the keyboard accelerator (shown after
the menu entry) will perform the command without dis-
playing the menu first. Keyboard accelerators are the fastest
way to invoke frequently used commands. For example,
pressing the keys Att and f9 simultaneously wil l minimize
a window. Users can customize keyboard accelerators to
suit their personal needs.

Control l ing Applications in the Window
Of greatest interest to users is not the window, but the

application running in the window. Fig. 5 shows a typical
appl icat ion's main window. The bulk of the space in the
window (known as the client area) is reserved for display-
ing the application. This can be text for a word processor
or a schematic for a CAD package.

Commands used to control the application are tucked
away in the menu bar at the top of the window. The menu
bar l ists the t i t les of avai lable menus. To displav a menu.
lhe user pos i t ions the po in te r over Ihe menu t i i l e and c l i cks
the mouse button, or uses one of the keyboard techniques.
Selecting a command from a menu bar menu is the same
process as selecting a menu item from the window menu
described earlier. The menu bar menus can contain both
commands, which are actions that occur immediately, and
settings, which are states of being (such as double-spaced
text) that are not actions themselves but that affect sub-
sequent actions such as printing.
Standard Menus for Standard Actions. Standard menus
are recommended for standard actions to ensure consistent
behavior among applications. The titles of the standard

Check Buttons

Pushbuttons Fig.6. A sample dialog box

menus for an application are listed in the menu bar. Three
of the standard menus include:

File. Contains file actions like opening, creating, saving,
and print ing a f i le.
Edit. Contains edit act ions l ike undoing, cutt ing, copy-
ing, pasting, and clearing sections of a f i le.
Help. Contains helpful information like context sensitive
instructions, information on the use of kevs, index list_
ings of help topics, and information on hlw to use the
help function.

Pop-up Menus, Check Boxes, and pushbuttons, The menu
bar presents an effective compromise between providing
an efficient storehouse for a large number of actions and
presenting visual cues so users can readily see what choices
are available.

Pop-up menus are a good choice for appl icat ions that
want to place the most commonly used actions under the
fingertips of mouse users. They are particularly effective
in text and graphics editors. Users can select a range of
text and press the second mouse button to pop up the
menu. There is no need to travel with the mouse pointer
to the menu bar. Pop-up menus are very fast when used
with the mouse drag technique.

Applications that want to make certain action choices
visible al l the t ime can use pushbuttons to place them in
control panels. Radio buttons and check boxes are used in
the same way for settings. All of these controls are modeled
after real-life objects. pushbuttons are found on many elec_
trical appliances. The radio buttons stem from a car stereo,
hence their use for mutually exclusive settings (a radio can
be tuned to only one stat ion at a t imeJ. Check boxes appear
on many paper forms such as job applications.

JUNE 1 990 HEWLETT pAoKARD louRlrer 1 1

Dialog Boxes. Dialog boxes are so named because they en-

able users to carry on a dialog with an application' Fig' 6

shows an example of a dialog box associated with a

hypothetical copy command. The sample dialog box con-

tains a text entry box for entering the name of a style sheet,

a set of radio buttons for indicating mutually exclusive

units of measure, check buttons indicating settings for type

style, option menus provding a limited choice of margin

sizes, and a row of pushbuttons indicating what action

should be taken.

Conclusion
Window-oriented graphical user interfaces offer an op-

portunity to make the computer as pervasive an appliance

as the automobile. But, if they are truly going to do so there

must be standards for consistent behavior. A behavior stan-

dard has advantages for both computer users and computer

vendors. Users are finding programs easier to learn and

use. The market for standards-conformant applications is
growing. Vendors are finding they can produce more appli-

cations while concentrating their product efforts on de-

veloping performance and features rather then developing
user interfaces.

References
1. B. Lam. et al, "The NewWave Off ice, " Hew.lett-Pockord /ournol,

Vol . 40, no. 4, August 1989, pp' 23-31.

The HP OSF/Motif Window Manager
The HP OSFlMotif window manager, which is built on top
of the x window sysfem, is awindow management interf ace

that provides a 3D enhanced Presentation Manager
appearance and behavior using HP OSFlMotif widgets'

by Brock C. Krizan and Keith M. Taylor

HE X WINDOW SYSTEM, Version 11 (also known

as X or X11)1'2 was developed as a platform on which

a variety of user interfaces can be implemented' The

particulars of a user interface are determined by the X

clients that run on the systern. X clients are programs that

use X to display information and receive input' The HP

OSF/\4otif Window Manager [mwm) is one such client'

Fig. 1 shows the relationship between the X Window

System and clients. The OSF,Motif window manager mwm

implements an interface that allows user and client ma-

nipulation of windows. Mwm dictates through its window

minagement interface a particular user interface behavior'

The principal objects that are manipulated using the win-

dow manager are the client windows placed directly on

the background, or root, window of the screen' Windows

within these top-level client windows are managed by

clients and are not directly manipulated by the window

manager. Users are provided with ways to move and resize

windows, to direct all keyboard input to a particular win-

dow, and to install color maps3 for a window'

X, as it comes from the Massachusetts Institute of Tech-

nology (MIT), provides mechanisms for supporting clients

that implement a variety of window management user in-

terfaces. A sample window manager, uwm, is distributed

by MIT. Several window managers have been implemented

ai companies and universities to meet the needs of a par-

ticular application environment, to emulate some non-X

Window System user interface, to provide the latest new

and improved window management interface, orto provide

1 2 HEwLEfl-PAOKARD JoUBNAL JUNE 1 990

personal customizations of uwm. Window managers are one

of the most common types of X clients'

With so many window managers available, implement-

ing another window manager would seem to be a waste of

time. However, the window manager is an essential and

highly visible part of any window system user interface,

".td
tn" usability of a system can be significantly affected

by the window manager. Prior to the availability of mwm's

predecessor, the HP window manager, or hpwm, HP custom-

ers who had access to X used the sample window manager

uwm or, less frequently, window managers available in the

public domain. HP wanted to give users an interface that

was visually refined, consistent, easy to learn, and based

on industry standards.
Hpwm supports industry standards in appearance and be-

havior as well as X standards for client interoperability'

The appearance and behavior of hpwm is based on Presen-

tation Manager, which also defines the window manage-

ment appearance and behavior for HP's NewWave Office'

Users already familiar with the Presentation Manager stan-

dard from the personal computer environment now find

their skills useful on an HP-UX workstation' The three-di-

mensional visuals of hpwm represent a refinement, not a

change, from Presentation Manager standard appearance'

In 1988, the Open Software Foundation (OSF) accepted

HP's proposal that hpwm be adopted as the basis for the

OSF/Motif window manager. The commitment to Presenta-

tion Manager as an industry-standard user interface was

key in OSF's decision. OSF/Motif encompasses several

technologies built on top of the X Window System, and
the new OSF/lvlotif window manager is only one piece of
the OSF/lvlotif environment.

Windor,r' Manager Characteristics

The basic set of functions that a window manager pro_
vides is relatively constant in any window system. On the
other hand, the appearance and behavior vary greatly from
one window manager to another. Many of the characteris-
tics of mwm were leveraged from hpwm. This allowed us to
meet an aggressive schedule and still satisfv the function_
ali ty and quali ty goals for mwm.

Common Appearance and Behavior
Like hpwm, the appearance and behavior of mwm are heav-

ily influenced by Presentation Manager. Indeed, the default
behavior of mwm, as well as that of the OSF/]vlotif widgets,
is as close to Presentation Manager as is practical. A key
benefit of this is that users can easily move between systems
running MS/DOS@ or OS/2 and systems running the HP_UX
operating system and X Windows. Nevertheless, some dif_
ferences were admitted into the design of mwm to satisfy
the variety of HP-UX users and to use the power of engineer-
ing workstations. This has led to a window manager with
a high degree of configurability and an enhanced appear_
ance over Presentation Manager.

Key behavioral aspects of presentation Manager and the
OSF/Motif environment include the direct manipulation
of objects and an object-action paradigm for user interac-
tion. Direct manipulation involves using the keyboard and/
MS-DOS is a U.S. registered trademark of Microsoft Corporation.

*Maximize

Button

Optlonal
Matte

*Minimize

Title Area Button

'Fesize

Handles
(8 Total)

Fig.2. A client window and the
vanous window manager compo-
nents.

JUNE 1990 HEWLETT pAcKARD lounner 13

++
l l

, V - V
Network

t
. Y

@ @ @)":"::3i::,::"

A- .,a8
= rh__

l_{
Fig. 1. Ihe X client-seNer model. ln this model the X server
is near the user and controls the display and manages the
input devices. The clients in this model are the applications
that talk to the server using the X protocol, such as mwm,
XLOAD, and XCLOCK. The X protocol allows the clienrc ano
seNet to run either on the same machine or on different
machines connected by a network. (a) X client-server at_
chitecture on stand-alone workstation. (b) X client-server re_
lationships in a distributed environment.

'Wlndow Menu
Button

or mouse to do window management functions directly'

such as moving and resizing a window' A user does not

enter a command such as move -w mywindow x: 10 y: 1 00, but

rather drags the window using the mouse to the new posi-

tion. With the object-action paradigm, the user selects an

object and then performs some action on the object'

3D Appearance
One deviation from strict adherence to the Presentation

Manager standard is in the appearance of the user interface

components. The three-dimensional visual style developed

for earlier HP products was accepted by OSF as part of the

OSF/Motif standard. 3D components appear in both the

window manager and the OSFAvIotif widgets. Use of 3D

components strengthens the direct manipulation paradigm

by providing visual objects that react naturally to user ac-

tions (e.g., buttons appear to go in when pressed).

Mwm uses the OSF/Motif widgets to provide visual and

operational compatibility with other clients that use the

OSflVotit widgets. All parts of mwm are displayed with

the 3D visual style. This includes the window manager

frame, icons, and menus. A key factor that influenced mwm's

use of the 3D visual style was the prevalence of window

manager components on the screen. The challenge was to

provide a 3D appearance but not to distract from or limit

ihe client user interface' Mwm is designed to be frugal with

its use of screen space, subtle in its use of 3D indications'

and restrained in its use of color. Fig. 2 shows a client

window and the various window manager components'

Configurable Appearance and Behavior
Although mwm implements the Presentation Manager be-

havior with a 3D visual style, configurability was consid-

ered a desirable departure from a strict Presentation Man-

ager model. In some cases configurability applies to aspects

ofthe user interface that are not constrained by the standard

appearance and behavior. The colors of components and

the fonts that are used fall into this area' Configurability

can also alter the standard appearance and behavior in

fundamental ways. Since it is almost impossible to provide

a single, fixed user interface acceptable for all users, con-

figurability is highly desirable.-Configuiability
of mwm is provided in a way that does

not burden users who are satisfied with the window man-

ager's standard appearance and behavior' Mwm provides

tie standard appearance and behavior as a default and

allows for user customization' Configuration is only neces-

sary if there are specialized requirements' In addition' mwm

provides a function that resets all customized mwm settings

io default values to give the user a known starting place

from which to work.
It is anticipated that only a small group of system ad-

ministrators will want to customize mwm. To make their

iob easier, mwm uses the same resoutce names for specifying

configuration values for colors and fonts as are used for

OSF/Motif widgets. The result is that configuring mwm is

similar to configuring any client built using OSFAvIotif

widgets.

ICCC GomPliance
Compliance with the standard Inter-Client Communica-

tion Conventions (ICCC) developed by the X Consortium

is a requirement for any X client' These conventions ate

intended to facilitate interoperability of X clients' Clients

that follow the conventions can coexist on the same screen

and not interfere with each other's behavior' This applies

particularly to the communication between clients and

window managers. The ICCC is the basis for the program-

matic interface to X window managers (see the box on page

23).
Mwm implements the ICCC standard in a way that is com-

patible with the standard OSF/\'Iotif behavior' This allows

a user to run a client even though it was developed without

specific knowledge of mwm.

Mouse and Keyboard Interfaces
Window managers are often implemented with a reliance

on the mouse for user interaction and the keyboard is ig-

nored. The OSF/lvlotif behavior specifies a functional

equivalence between mouse and keyboard interaction'

Mwm is fully functional when it is run on systems that

do not have a mouse input device. Not only does the stan-

dard OSF/lvlotif behavior have keyboard support, but mwm

supports features beyond the OSF/lvIotif standard' For

e*ample, keyboard and mouse interaction can be mixed

together, even while doing a particular action such as mov-

ing a window.

OSF/Motif Window Manager Operation

Mwm has two basic phases of operation: start-up and event

processing. At start-up, mwm asserts itself as the window

manager for a particular screen, processes configuration

information, and takes care of currently displayed client

windows (see Fig. 3). Event processing is the steady-state

phase of operation. Like most X clients, mwm is event driv-

en-that is, it waits for some type of X event, processes

the event, and then waits again. In the event-processing

phase, all mwm actions are the direct result of some event'

Start-up
When mwm first starts up it must indicate to the X server

that it wants to be the window manager' The X server has

no notion of a special window manager client, but there

are some X facilities that are necessary for window manage-

ment that cannot be accessed by more than one X client'

By asserting control of these facilities, mwm effectively locks

out other window manager clients (conversely, mwm is

locked out if another window manager is already running)'

The primary facility over which mwm gains control is the

facility for redirecting several types of X requests from

other clients (see Fig. 4)' Usually a client makes a request

to the X server to do a function and that function is done

immediately by the server. With a redirected request, the

function is not handled by the X server, but is passed to

the redirecting client (i'e., the window manager)' The win-

dow manager decides how to handle the redirected request

and then makes the request, sometimes changing the re-

quest to be compatible with its window management

pol icies.
The types of X requests that are redirected by mwm in-

14 rewrerr-pncKARD JoURNAL JUNE 1990

clude:
I Window configuration fmoving and resizing)
I Window stacking (who's on top of whom)
I Window mapping (display of a window on the screen).

These requests are redirected only when they apply to
top-level client windows, which are windows displayed
directly on the background or root window of the display.
Using its ability to redirect X requests, mwm can control
when, where, and how client windows are displayed.

Once mwm has asserted itself as the window manager, it
can then configure itself and prepare to do event process-
ing. In general mwm has its configuration specified through
resource files like other X clients (see Fig. 5). These resource
files contain user-specific configurations, client-specific
configurations, and screen-specific configurations.

Resources that are specific to fonts, colors, and bit maps
are defined and referenced in general-purpose resource
files. However, not all configuration resources can be con-
veniently specified in a general-purpose file. The mwm re-
source description file (usually called .mwmrc) contains
descriptions of resources that are difficult to specify in the
general-purpose resource files. Mwm menus, mouse seman-
tics, and keyboard semantics are described in the mwm re-
source description file and referenced in other resource
fi les.

The last thing that mwm does during its start-up phase is
adopt client windows that are currently being displayed.
Mwm assumes control over the placement of client windows
on the screen. In the usual case where mwm is the first
client to be started there will be no clients to adopt.

Fig.4. Event redirection. (a) lf nowindow manager is running
(no redirection), the client's window mapping is done im-
mediately. (b) When mwm is running, the seNer redirects the
client's map window request lo mwm. lvtwm adds its window
border before asking the server to comptete the window map-
ping.

Processing
After mwm completes start-up it goes into a loop waiting

for and processing events. Events are messages from the X
server that are generated as the result of some user or client
action.

When a top-level client window is to be displayed on
the screen, the window manager receives a map request
event. In processing the request, the window manager re-
trieves client-specified and user-specified configuration in-
formation to place the client window on the screen. The
client window is reparented to a window manager frame
window. In effect, the client window is placed inside a
window manager frame window. This is the mechanism
that allows mwm to give all clients a common top-level
window border. In the frame window, around the outside
of the client window, are placed the window manager di-
rect manipulation components shown in Fig. 2. Once the
client window is dressed up in its window frame, it is
placed on the screen.

User interaction with the window manager results in
mouse (button and motion) events and keyboard (keyl

Map Window

Map

User's X Resources
(e.9., $HoME/.xdefautrs)

Fig.5. Resource files used by mwm.

ltr.lnr
v

I

I
Man window

Y

E
t.Gl:laY:Ta

u
l l

Requestl lMap Window

+-J
H
v

(b)(a)

Application Default Resources

mwm Resouces
(e.9.,$HoME/.mwmrc)

Fig.3. OSF/Motif Window Manager staft-up process.

JUNE 1990 HEWLETT-pACKARo louRnar 1 5

events. When a user interacts with a direct manipulation

window manager component, a stream of events is gener-

ated. Mwm associates the events with a particular user inter-

face component and invokes the associated function' Im-

mediate visual feedback of the user's interaction maintains

the appearance and behavior of the direct manipulation

interface.
Users can configure window manager actions to be in-

voked by particular key or button events. This interface to

the window manager is in addition to the standard interface

which is based on direct manipulation of window manager

components. Mwm arranges with the X server to grab button

and key events that invoke window manager functions'

This grab mechanism allows the window manager to get

the events even while another X client window is receiving

keyboard input.
Termination of mwm is triggered when a window manager

function invoked by a user or by an event indicates that

the X server has been shut down' When mwm is terminated,

the window frames that belong to mwm are destroyed' Nor-

mally, all the child windows of a window that is being

destroyed are also destroyed. However, since mwm repar-

ents client windows to their window frames at start-up,

the desirable behavior is for the client windows to be re-

parented back to the background (root) window so that the

clients can continue to run. To accomplish this, mwm uses

the X11 save set mechanism to cause client windows to be

reparented back to the root window when mwm terminates'

By placing all client windows that have been reparented

to window frames into its save set, the windows are automat-

ically reparented back to the root window by the X server

when mwm terminates.

Restart
The restart function is invoked when a user wants to

reconfigure mwm. Restart is necessary because some re-

sources are only read by mwm in its start-up phase' Any

aspect of the mwm configuration can be changed at any time

using the restart function' The window manager restart

funciion effectively terminates the current instantiation of

mwm and starts a new one. This function is special in that

it causes mwm to make a complete pass through both of its

operational phases. The event that invokes the restart func-

tion is processed in the steady-state event processing phase'

Restarf execution begins with the termination of mwm and

completes when mwm starts up again.

OSF/Motif Window Manager
ImPlementation

Like the features and characteristics of mwm, most of the

code and design for mwm were leveraged from the HP win-

dow manager. The period when hpwm was designed and

implemented was one of rapid change for X and for HP's

use of X. This had to be taken into account in formulating

an implementation strategy for mwm. For example:
I Hpwm was implemented at the same time that there were

new developments in user interface technologies and

components. However, to minimize risk, stable technol-

ogies were used in favor of the newer ones.
r The user interface components that hpwm used were often

16 newrgrr-pecxAnD JoURNAL JUNE 1990

first-generation products. Therefore, visual and perfor-

mance tuning of these components could not be relied

upon.
I Prototype versions of hpwm were required to refine the

3D visual style, to support usability testing, and to sup-

port prototype application environments.

r Standards that hpwm used were under development in

parallel with the implementation of hpwm.

The implementation strategy used for hpwm involved sub-

stantial prototyping and design, followed by bottom-up

reimplementation. Prototyping and design accounted for

more than half of the engineering and calendar time spent

on implementing hpwm. Development of a prototype de-

layed dependencies on user interface components and

facilities. The prototype was used to identify visual and

performance problem areas requiring design refinements.

Design decisions were substantiated or changed based on

experience with the PrototYPe.
After the prototype and hpwm, mwm can be viewed as the

third pass on the window manager. The experiences gained

from the earlier efforts were used during the definition and

implementation of mwm. Also, the use of the hpwm engineer-

ing team for the development of mwm allowed for rapid

and effective progress once the functionality was defined.

Widgets and Windows
There are two principal levels in which a programmer

can write a user interface for an X client: the high level

using a widget library like the OSF/Motif widgets and the

low level using the X library. Widgets provide highJevel

obiects (like menus and buttons) that embody the semantics

of specific user interactions, and the X library provides

only basic window functionality. Since the HP window

manager user interface was implemented using a mixture

of widgets and the X library, mwm was implemented using

a similar mixture of l ibraries.
Mwm uses the OSF/lvlotif widgets to implement its menus'

This provides appearance and behavior consistent with

applications that also use the OSFAvIotif widgets. It also

leverages the engineering effort that went into the design

Fig. 6. Exploded view ol an mwm window frame

and development of the menu widgets.
Mwm does not use any widgets for the window frame

components (title bar, resize handles, and border). To un-
derstand why, it is necessary to examine the decision made
for hpwm. First, at that time, the available widgets did not
offer enough control over the thickness of the aD beveling
(the top shadow and bottom shadow highlights) to give the
desired 3D effect. The window frame has oddly shaped
pieces and complicated joints that require explicit drawing
by the window manager. Also, the visual design requires
single-pixel beveling between components of the window
frame.

Second, although using multiple widgets as buttons for
the frame decoration simplified some aspects of event han-
dling, it complicated changing the color of the entire win-
dow frame. Some window managers change only the title
bar appearance to indicate the active window. However,
this can be difficult or impossible to spot depending on
the size of the window and the degree to which it is
obscured. Mwm and hpwm change the color of the entire
frame to indicate keyboard focus. Thus, the functional and

performance needs of hpwm required a solution other than
using the widgets available at the time.

It is important to note that with the latest version of
OSF/NIotif widgets, most of the objections that caused the
initial decision not to use widgets for the window frame
have gone away. For example, OSF/lvlotif provides widgets
called "windowless gadgets" that provide better perfor-
mance than the widgets with windows that we used. How-
ever, there are still some mwm user interface requirements;
such as the resize cursors, that require either widgets with
windows or special processing.

An mwm window frame consists of ten windows for draw-
ing, cursor presentation, and event handling (see Fig. 6).
The main frame window has the root window as its im-
mediate parent. It is an inpuVoutput window and is the
window to which frame drawing is done. Above the frame
window are eight input-only windows for the resize han-
dles. Each of these windows has its own cursor to indicate
the type of resize that can be started in that area. The next
layer up includes an input-only title window which is used
to display a different cursor for the title area and partially

f

lt
?

tr
#

ll
n

fr
#
#
#

This is a fragment of an .Xdefaults f i le containj.nq sone
representative sett ings for the OSF/Motif window ninager.

General Appearance and Behavior Resources

Set private mwm button and key bindings (see .mvrmrc).

Mwrn*buttonB j-nd ings :
Mwrn*keyBindings:

Rernove active l-abel from
icon placement.

M^tn*iconDecoration:
Mwm*iconPlacement:

Cornponent Appearance Resources

Use these colors on the rtactiveil window
(the window that gets keyboard input).

m'^rm* act iveBackground :
mwm*activeForeground :

Use thi-s color scheme

mwmr,backgrround:

font to use for l"lwrn

Mwm*fontl,i_st:

(dif ferent fonts for t i t les, menus and icons)

MyButtonBindings
MyKeyBindings

icon decoration and tighten

irnage label
left bottorn tight

turquoise
white

on rr inactiverr windows.

Mwm*menu*title* f ontlist :
Mwm*icon*fontlist:

cadet blue

helvRlB
ncenR24
helvBl4

/users/keith/Bitrnaps/terminal . ><Jcrn

border

rnenu title minimze

CIient-Specific Resources

I + IP!"* gets a special icon image
+ Reduce frame decoration for xload and xclock.

Mvm*HPterm* iconlmage :

Mwm*XClock*cl ientDecorat ion :

Mwm*)fi.oad* c1 ientDecorat ion :

Fig. 7. A sample resource file
showing some sample configura-
tions fot the OSF/Motif window
manager.

JUNE 1990 HEWLETT-PACKARD JoURNAL 17

obscures the upper resize windows' This layer also in-

cludes a base window on which the client window sits.

The base window partially obscures the lower resize win-

dows and is used for drawing the client matte if one is

specified. The client matte is a feature of mwm that allows

the user to create an extra level of distinguishability for a

window by specifying a color for the area below the title

bar window shown in Fig. 6. An example of this feature

is illustrated by the strip labeled optional matte in Fig. 2.

The primary reason there are so many windows is to get

the desired cursor behavior. As the pointer moves into each

resize area, the cursor changes to indicate the type of resize

that can be started in that area. This is accomplished in

mwm by creating input-only windows that overlay the

graphics in the frame window. Each window is created

with a different cursor attribute. A benefit of this, from

mwm's point of view, is that the X server takes care of chang-

ing the cursor shape when the pointer enters or leaves these

windows. Careful overlapping of the title bar window and

the base window clips the corner resize areas to their

characteristic nonrectangular shapes'

Gonfiguration
The mwm approach to configuration can be characterized

in terms of consistency, flexibility, performance, and usa-

bility. These attributes were achieved using the following

techniques.
! The mwm configuration is based on the values of re-

sources set in the resource files. Mwm resource names

are consistent with the standard OSF/lvlotif widget

names. The names are defined such that a single entry

in a resource file can be used to specify values for related

resources. For example, the background color used for

all window manager components can be specified with

one resource.
I Most configuration overhead occurs at start-up and is

avoided during user interaction, when quick feedback

is required.
I All mwm resources have default values that are consistent

with the standard Presentation Manager behavior and

3D appearance.
Three types of resources are processed by mwm: general-

behavior resources, component-specific appearance re-

This is an annotated fragment of an .rnwmrc file

I workspace menu descriPtion
* rrri^= menu is posted by a button binding (see MyButtonBindings below)

It offers the oPtions of
+ starting ln hpterm terminal emulator (80 colurnns by 42 lll99) ''t

+ startinf an hlterm that is logged into a rernote system (bi11) '

+ starting an hpterrn that is logged into a rernote system (dave) '

+ refreshing the entire disPJ,aY
+ restarting the window manager

i ienu workspace
I

"Workspace Menurt f . t i t le
hpterm f.exec rrhPterm =80x42&rt
Ui:.r f .exec "hbterm :8ox42 -T bi l l -n bi l l -e r login bi l l ' r
dave f.exec "hpterm :8ox42 -T dave -n dave -e rlogin daverl
no-l-abeI f . seParator
Refresh f.refresh
Restart f .restart

key binding descriPtions
fnis Xey-ninding replaces the default Shift-Esc binding
that posts ttte window menu.

keys MyKeyBindings
{

Al-t<Key>EscaPe
)

icon I window f. post_wmenu

t

#
#

4
t

t

#

button binding descriPtj,ons
These button bindings

+ post a workspac6 menu over the root window (screen backqround)
+ irovide an aLceferated move fr:nction for icons and windows
+ irovide an accelerated resize function for windows

Buttons MyButtonBindings
{

<BtnlUp> root
Alt<Bt;1Down> iconlwindow
Al-t<Btn2Down> window

)

f.nenu WorkMenu
f.move
f . res ize Fig. 8. A portion of a file defining

mwm g e n er al be h av i o r reso u rces.

18 HEWLETT-PACKARD JOUFNAL JUNE 1990

sources, and client-specific appearance and behavior re-
sources. Fig. 7 shows a portion of a file with some sample
resource settings.
General-Behavior Resources, General-behavior resources
are used to define window manager policies such as direct-
ing keyboard input to a part icular cl ient window and
specifying when to instal l a cl ient window's color map.
Button and key associat ions * to window manager functions
are also specif ied. For example, pressing the left mouse
button with the pointer over the root window can be con-
figured to post a menu. The general-behavior resources are
completely processed when mwm is started.

Fig. B shows a portion of the mwm resource file used to
define the button and key associat ions declared in the sam-
ple .Xdefaults file shown in Fig. 7. The first part of the re-
source file, labeled Menu Workspace, defines the appearance
and the functions associated with the menu shown in Fig.
9. For example, for the menu item hpterm, the function f.exec
is executed when hpterm is selected, and the field ,,hpterm

:80x42&" defines the HP-UX command that is executed by
f.exec to start a new hpterm terminal emulator that is B0
columns by 42 l ines in size. The key and button bindings
define the event (key or button selectionl, the context
(where the event occurred), and the action associated with
key and button selections. From the key binding descrip-
t ion in Fig. B, the key sequence Att ESC entered while in
an icon or window context would cause the Window menu
to be displayed.
Component-Specific Appearance Resources. Mwm high-
level components include the window frames, icons fsmall
representations of client windows), and window manager
menus. These components use the same set of appearance
configuration resources. The resources specify the colors
and textures to use for 3D appearance and the font to use
for displaying text. Defining the 3D appearance of a compo-
nent can involve specifying the texture and color for the
foreground, the background, the top shadow, and the bot-
tom shadow of the component. Default component-specif ic
appearance resources can be used to avoid specifying any
'Also called key bindings

resources for a monochrome system, and only the back-
ground color on a color system. On a color system the top
shadow, bottom shadow, and foreground colors are gener-
ated algorithmically. The algorithm generates an effective
3D visual appearance based on a background color. New
colors are generated by shifting the RGB values of the back-
ground color. The values are shif ted to make the top shadow
color lighter, the bottom shadow darker, and the foreground
color much darker than the background color.

The window frame and icon components have a set of
appearance resources for both active and inactive states.
A component in the active state can receive keyboard input,
and a component in the inactive state cannot. In the case
of a window frame, the client window receives the keyboard
input. For human factors and performance reasons there
is a single 3D color scheme for active components and a
single color scheme for inactive components. Multiple,
client-specific color schemes for active and inactive states
led to problems with identifying the client window that
was supposed to receive keyboard input. Also, interactive
performance is maintained by allocating all component
colors and graphics contexts (graphics state information
used in X drawing requests) at start-up time.
Client-Specific Appearance and Behavior Resources, Re-
sources used by the window manager to customize compo-
nents for particular client windows are client-specific re-
sources. The image in the icon representation of a client
window can be specif ied. Cl ient-specif ic colors can also
be specified to color the client icon image and the 3D matte
that fits within the window frame. Client-specific resources
are retrieved based on the resource name or class of a client
window. The resulting X resources and window manager
components are cached to avoid resource processing over-
head when several clients of a particular name or class are
run. This enhances performance because client windows are
placed on the display frequently during user interaction.

Event Processing
Mwm event processing is designed to handle different

types of events and event contexts. The events that are
processed include button presses, pointer motion, window
destruction, and many more. Event contexts define the Io-
cations where the events occurred. These locations include
the root window, widgets, nonwidget window rranager
components, the window frame, an icon, and client win-
dows. The window frame has subcontexts such as the sys-
tem menu button, the resize border handle, the title, and
the minimize button.

Table I lists some events that are processed, the contexts
they occur in, and the actions taken when the event occurs.

Events with a root window context generally involve
newly displayed windows, destroyed cl ient windows, or
the invocation of a window manager function that is not
cl ient-specif ic (e.g., repaint the screenJ. Events for mwm
menus have a widget context. Events with a nonwidget
context are generally on the window frame and are often
related to user interaction with the direct manipulation
components such as the resize handles. Events with a client
window context are typically notifications about the actual
or desired state of a client window.

The event-processing loop for mwm has the following

Fig. 9.
Fin R

Ihe Workspace menu descrrbed in the .mwmrc file in

JUNF r990 HFWI I n pAcKARo . to . tR le r 19

Table I
Events, Contexts, and Actaons

Non-
Widget widget

Context Context
Event Root

Context

Map Decorate

Window thewindow
with a new
frame and
place it on

the display.

Window Removethe

Destroyed frame from

the display
and recovet
resources.

Button
Press

Pointer
Motion

Button

Release

Change
ColorMap

Install
color map for
window.

flow of control.
I Use the Xt Intrinsic function XtNextEvent to retrieve the

next event sent by the X server.
r Identify the event context. Events are always reported

relative to some window. The X context manager, which

is accessible through X library functions, is used to as-

sociate mwm contexts and data with the window iden-

tifiers provided in events.
r Dispatch nonwidget events to the appropriate event

handler and dispatch widget events using the Xt Intrinsic

function XtDispatchEvent.
r Go back to the start of the event loop to get the next event.

Mouse Event Processing. Much of the behavior of the win-

dow manager interface is based on how mouse events are

processed. Mwm divides mouse event processing into two

categories: mutable behavior event processing and immu-

table behavior event processing.

Immutable behavior is built into mwm and is associated

with the direct manipulation features (title bar, resize han-

dles, etc.l of window frames and icons. Each direct manipu-

lation feature has its behavior encapsulated in mwm event

processing. Button press-and-release events and mouse mo-

tion events that occur with a context corresponding to a

direct manipulation feature are processed by the event

handler for that feature.

20 HEWLETT-PAoKARD JoURNAL JUNE '1990

Mutable behavior event processing is based on user
specification of mouse event associations with window
manager functions. For example, button three of the mouse
can be associated with the minimize function such that
whenever button three is pressed with the mouse pointer
over any part of the client window or window frame, the
window will be minimized.

Mwm maintains a table that associates mouse events with
window manager functions, and it uses this table for decid-
ing which window manager function to invoke'
Keyboard Input Focus Event Processing. The window with
the keyboard input focus is known as the active window'
What this means is that when a key is pressed, the input
is applied to the window with the keyboard input focus.
Moving the keyboard input focus between windows is an
important window manager function.

Two behaviors are supported by mwm for setting the
keyboard input focus: explicit selection and pointer-rela-
tive selection.* Explicit selection means that a specific win-
dow is designated to be the keyboard input focus window.
Explicit selection of the input focus is Presentation Man-
ager behavior. For pointer-relative selection, the window
under the mouse pointer automatically becomes the
keyboard input focus window. This behavior is favored by
many technical users.

Very different event processing is needed to handle the
two different keyboard input focus behaviors. Setting the
keyboard input focus in pointer-relative mode is done using
enter and leave window events. When the pointer enters
a window frame, mwm receives an enter window event.
Mwm responds by making a request to the X server to cause
delivery of keyboard input to the client window. As long
as the pointer remains over the window frame (or the client
window), keyboard input will be delivered to the client
window. This maintains the illusion that the window frame
is just another part of the client window. When the pointer
leaves the window frame, a leave window event is received.
This is usually followed by an enter window event as the
pointer enters the root window or another window frame.
Mwm responds by resetting the keyboard input focus ap-
propriately.

Event processing for explicit selection of the keyboard
input focus primarily involves button press and key press
events as opposed to enter and leave window events. When
a button press event is received by mwm and the context is
a client window that does not have the keyboard input
focus, mwm calls the X server to cause the delivery of
keyboard input to the client window.

Mwm has to take care when it is processing button press

events. Usually button events go to the window that is
under the mouse pointer at the time the button is pressed
or released. This means that if the pointer is over a client
window and the button is pressed, the client window
would normally get the button press event and mwm would
not see an event. Mwm handles this by establishing a passive
grab of the button event when it is generated in the client
window context. A passive grab of the button causes the
event to be delivered to mwm and not to the client window
(see Fig. 10a). Mwm has effectively stolen a button event
that would normally belong to the client window.
'Also known as tracked listener and real-estate driven

CIient
Window
Context

Post (show) Activate
menu. frame com-

ponent
button or
resize
handle.

Move Move or
selection resizeframe
cursor. outline.

Unpost Commit
(hide)menu. action.

This is not very friendly because the stolen event is often
a mouse button 1 press event which, according to Pres-
entation Manager, is also used to do selections of user
interface components in the client window. Mwm redeems
itself by making the button event available to the client.
After mwm sets the keyboard input focus, it replays the
button press, causing the event to be delivered to the client
window (see Fig. 10b). Mouse event processing by the
server is then allowed to continue, and mouse events that
occur after the button press are delivered to the client win-
dow (if the client window is interested in the events). While
a client window has the keyboard input focus, mwm turns
off its passive grab request for a button press.
Interactive Pointer Tracking. A direct manipulation inter-
face has to work hard to provide good feedback to the user.
An example of this occurs during interactive moving or
sizing of windows in mwm. Mwm draws a frame outline that
tracks the new position or size of the window as the user
moves the mouse around. Making this operate smoothly
and efficiently requires some interesting event processing.

All X window managers provide a feedback mechanism
like the one described above. Many do so by polling the
position of the pointer (mouse cursor) and drawing a new
outline (erasing the old) when the position changes. This
has the advantage of keeping the window manager and the
server synchronized, providing smooth behavior. The dis-
advantage is that the polling continues when the pointer
is not moving, using up network bandwidth if the window

Time

Fig, 10. (a) Mouse input stolen by mwm using a passive
grab. The short arrow indicates that the button event nevel
makes it to the client. (b) Mouse input intercepted by mwm
and replayed.

manager is running remotely.
The first implementation of hpwm, forerunner of mwm,

departed from polling by requesting the server to report
pointer motion events only when the pointer moved. Thus
the drawback of polling was avoided. However, when the
pointer moves, a large number of events must be processed.
This was not a problem on medium-to-high-performance
workstations that could keep up with the flood of events,
but a problem did occur on low-performance machines,
particularly X terminals. The time to process each motion
event was longer than the time to generate a new one,
causing the user to observe a window outline that would
fall behind the motion of the pointer.

The solution to the problem, implemented in mwm (and
a later hpwm), is to request the X server to send pointer
motion hints, which are a special type of pointer motion
event. In this mode of operation, the X server only sends
pointer motion hints in conjunction with certain other
events, such as window exit and entry. The X server also
sends a pointer motion hint when the pointer moves from
the last position queried by mwm. Each time a pointer mo-
tion hint is received, mwm acknowledges it by querying the
position of the pointer. It then moves the pointer outline
based on the values returned by the query. Tracking the
pointer position with pointer motion hints is more expen-
sive than polling when the pointer is moving, but it avoids
the polling burden when the pointer is not moving.

Adopting a Client Window
Adopting a window refers to the process that mwm goes

through when it initially encounters a window that it does
not yet manage. This happens with the set of client win-
dows that are on the display before mwm is started, as well
as with clients that are started after mwm is already running.
For each window that it adopts, mwm collects information
from the client and the resource data base that affects the
appearance of the window border, the placement of the
window on the screen, and the window's behavior in re-
sponse to user actions.

Communication between an X client and an X window
manager occurs through events and properties (special in-
formation associated with a window). Among the events
that are processed by mwm are those that begin or terminate
management of X clients. The properties allow the client
to indicate placement, decoration, and behavior informa-
tion.

Mwm becomes aware of a new client when it receives the
client's redirected request to display (or map) its top-level
window. Mwm responds to this event by:
r Examining several client window properties
I Constructing a window frame and icon for the window
r Reparenting the client window to the mwm window frame
r Placing the client window on the display.

Several properties are used in this client-window man-
ager communication. Some are listed in Table II.

The initial position and size of a window can be set
either programmatically or interactively by the user. This
information is passed to mwm in the WM_NORMALHINTS
property of the client window. The value of this property
is what determines how mwm places the window. Mwm will
let the user place the window interactively if mwm's interac-

(b)

JUNE 1 990 HEWLETT-PAoKARo lounrer 21

Property

-MOTIF_WM-HINTS

_MOTIF-WM_MENU

WM-CLASS

WM_HINTS

WM.ICON_NAME

WM_ICON-SIZE

WM-NAME

WM_NORMALHINTS

WM-PROTOCOLS

Table ll
Window Properties

Use

Frame decoration and function
preferences

Modifywindowmenu

Client class for fetching resources

Icon image

Iconname

Icon sizes preferred by window
manager

Client window name

Window position and size

Client-window manager
communication

Window manager state for client

Secondary window indicator

window menu that is posted using the window menu but-
ton on the window frame. The window menu is like a
pull-down menu. It appears below the window menu but-
ton when the pointer is moved over the window menu
button and the selection button (on the mouse) is pressed.
A selection is made by dragging the pointer to a menu item
and releasing the selection button. A client-specific win-
dow menu can also be posted by a button or key event in
the client icon context.

To the user it may seem that mwm supports a large number
of menus. This is because each client window has a menu
that is posted from the window menu button, and each
client icon has a menu that can be posted with a key press
(typically Shifl Esc). There are also menus that are com-
monly used to start clients and to perform various window
management functions (e.g., change the stacking order of
client windowsl. The heavy use of menus, combined with
the relatively high performance cost of making menus, led
to the design of a menu cache for mwm. A menu cache is
possible because many menus have the same menu items.
Also, the flexibility of the OSF,tlvlotif menu widget allowed
mwm to use a pop-up menu type for all the menus' Mwm
uses the OSF/\4otif pop-up menu type to implement win-
dow menus and simulates pull-down menu behavior when
a menu is posted using the window menu button.

Mwm keeps a list of menu specifications. When mwm
makes a menu it starts with a particular menu pane specifi-
cation. The workspace menu entries given in Fig. B illus-
trate a menu specification. Other menus can be specified
to cascade from the starting menu (see Fig. 11). When a
menu is made. an association is made between the menu
and the initial menu specification. Subsequent calls to
make the same menu will return the menu that is already
built. The key to making this work is the capability of mwm
to adjust the characteristics of the menu dynamically so
that the menu is set up correctly for the context in which
it is posted.

Mwm adjusts the following menu characteristics:
r The active and inactive appearance and behavior of

menu items are matched to the context in which the
menu is posted. Menu items that are not applicable in
a particular context are grayed out and are not selectable.
For example, a menu item that minimizes a client win-

(continued on Page 24)

Menu Workspace
(

"Workspace Menu"

a

Retresh
Restart

a

a

"Systems" Menu Systems
(

"Systems"
A
B
a

a

E

Fig. 11. fhe Systems menu is cascaded from the workspace
menu because of the entry ln workspace that calls lhe Systems
menu.

WM_STATE

WM-TRANSIENT_FOR

tive placement is enabled and if the initial position has

been set programmatically. However, if the initial position

has been set by the user (e.g., via a command-line option),

interactive placement will not be done even if it is enabled.

Mwm manages windows, not clients. If a client uses sev-

eral top-level windows, mwm will treat them all equally

even though they may have different purposes. However,

a client may indicate a secondary top-level window, such

as a dialog box, by placing the WM-TRANSIENT-FOR property

on it. Mwm will decorate a window with this property dif-

ferently, using a separate decoration resource for secondary

windows. Mwm will not place a secondary window inter-

actively.

In addition to reading properties when the window is

adopted, mwm tracks changes to some of the properties

while the client is running. The client may change the
name displayed in the title bar by changing the WM-NAME
property. Similarly, the client may change the name dis-
played in the icon by changing the WM-lcoN-NAME property.

Window geometry (i .e., size, posit ion, and resize incre-

ment) changes are also tracked in WM-NORMALHINTS to
make sure that resize units are properly reported. For exam-
ple, a terminal emulator may resize its window to display
function keys, but the number of text rows reported as the
window size should not change.

Menu Handling
Mwm supports both client-specific and general-applica-

tion menus. The contents of client-specific window menus

and general-application menus can be specified by the user.
The user can also specify the button or key event that
causes a menu to be posted and the context for the event
(e.g., post a utility menu when mouse button 1 is pressed

with the pointer in the title area of the window frame).

Everything that can be done with menus using a mouse

can also be done using a keyboard.
Presentation Manager behavior includes a client-specific

22 lewrErr-pncKARD JoURNAL JUNE 1990

Interclient Communication Conventions

The X Window System Version 11 (X) was designed to be a
platform on which windowed application environmenls could be
buil t . l t provides a basic set of mechanisms for bui lding these
environments and does not impose any part icular user interface
behavior. With a minimal set of constraints on behavior an X-
based application (X cl ient) may be usable in isolat ion but unable
to coexist with other X cl ients. Coexistence entai ls civi l ized shar-
ing of l imited resources (e.9., the physical color map) and the
use of standard mechanisms for exchangrng information (e.g.,
cutt ing and pasting text). A window manager can enforce coexis-
tence of X cl ients in areas such as the use of screen soace and
keyboard input, but even a window manager does not have
absolute power to maintain order. An unfr iendly X cl ient could
grab the X server and prevent other X cl ients from gett ing input
or doing output

lnter-Client Communications Conventions Manual
Early in the development of X, representatjves from the different

companies working on or with X started meeting to address the
problem of X cl ient coexistence. This group has been off icial ly
sanctioned by the X Consort ium to develop intercl ient communi-
cation convenlions. The conventions that have been developed
are documented in the lnter-Client Communicatron Conventions
Manual (ICCCM). ICCCM compliance has become a key design
cri terion for X cl ients. The development of the ICCCM is ongoing
and the general goals that shape this development include:
I lmproving cl ient coexistence in areas of potential contention.
r Tracking the evolut ion of the X Window System and X cl ients

and providing new conventions that are general ly appl icable.
r Adding X Wlndow System support for new conventions.
I Ensuring that al l ICCCM changes are backwards compatible.

This means that al l previously defined conventions are main-
tained, and old conventions are changed only when they
clearly cause incorrect behavior.

Client-To-Window-Manager Communication
Many conventions are documented in the ICCCM. However,

the conventions that have received the most attention by X cl ient
developers have been those dealing with cl ienfto-window-man-
ager communication. A key goal of the mwm design was ICCCM
compliance. X cl ients that are ICCCM compliant can coexist in
a predictable manner with mwm and with each other. Window
propert ies are one of the X mechanisms 1or cl ienfto-window-
manager communication. A window property is a col lect ion of
information of a particular type that is associated with a window.
Clients associate, by convention, several propert ies with their
windows to communicate with the window manager. Noteworthy
examples of propert ies that are used for cl ient-to-window-man-
ager communication are WM_NoRMALH|NTS and wM_pRoTo-
COLS. The WM_NORMALHTNTS property deals with window size
and posit ioning, and WM_PROTOCOLS deals with publ ic or private
wrndow manager communication protocols.

Client Window Size And Position
The wM_ NoRMALHTNTS property is used by a client to give a

hint to the window manager on how the cl ient window should be
posit ioned on the screen and what i ts size should be. The window
manager enforces how a cl ient is posit ioned and sized on the
screen. Some window managers may enforce a pol icy where al l
client windows are tiled on the screen (displayed without overlap-
ping), or where windows are not al lowed to be displayed with

part of the window off the edge of the screen. The WM_NoRMAL
HINTS property provides the window manager with a starting
point from which i t then applies the screen layout pol icies An
ICCCM compliant window manager can ignore some or al l of
the information contained in the WM_NoRMALH|NTS property. An
X cl ient should be designed to be robust enough to work in
environments where this is the case. This demand on X cl ients
is based on an ICCCM principle that the user is in control of the
user interface, not the X cl ients.

The WM_NORMALHTNTS property contains the following pieces
of information:
r Minimum and maximum wrndow sizes. These are reasonable

minimum and maximum sizes for the window. Mwm uses the
maximum size when a window is maximized.

I Base and increment window sizes. The overal l window size is
the base size plus some number of increments. Mwm adjusts
a window size to meet this constraint when the window is
init ial ly placed on the screen or fol lowing resizing by the user.
This is especial ly useful when the window is associated with
a terminal emulator X cl ient. The base window size usually
includes the height of the softkeys. The increments are set to
be equivalent to the height and width of one of the characters
displayed in the terminal emulator window (terminal emulator
X cl ients use f ixed-size fonts in which al l characters are the
same size).

r Minimum and maximum window aspect rat ios. The aspect
rat ios indicate al lowable values for the rat io of the window
width to the window height. For example, an X cl ient can indi-
cate that i t would always l ike to be displayed in a square
window (the aspect rat io is 1:1).

I Anchor point for window placement. The anchor point for plac-
ing a window al lows an X cl ient to specify how the window
posit ion should be interpreted. This is useful in the case wnere
a window manager adds a frame around the X cl ient window
and adjusts the posit ion of the X cl ient window on the screen.
The X cl ient can specify an anchor point such that a corner
or side of the X cl ient window, including the window manager
f rame, is placed at a part icular absolute location on the screen.
In general, mwm uses the WM_NORMALHTNTS information with

l i t t le or no change to place an X cl ient window. Ad.iustments are
only made i f the user requests some ref inement of the mwm
window placement pol icy (e.9., the user requests that windows
be interactively placed when they are f irst displayed). In placing
an X cl ient window on the display, mwm first determines a desir-
able window size, which is usually the window size specif ied by
the X client, Mwm then retrieves the WM_NORMALHTNTS property.

The processing of the WM_NoRMALH|NTS property varies
based on the version of the ICCCM that the associated cl ient
implements. Mwm uses the size of the property in f iguring out
which version ol the ICCCM to use. This allows mwm to be back-
wards compatible in complying with the ICCCM.

Client and Window Manager Protocols
The wM_pRoTocols property is used by an X client to indicate

interest in publ ic or private window-manager-to-cl ient communi-
cation protocols. In general, these protocols are used to inform
an X cl ient of some window manager action that has occurred
or is about to occur (e.9., the window system is about to be
terminated). Public protocols are registered by the X Consort ium,
specif ied in the ICCCM, and supported by most, i f not al l , ICCCM
compliant window managers. Private protocols are specif ic to a

JUNE 1990 HEWLETT pACKARD JoUBNAL 23

part icular window manager. Private protocols that have high ut i l i ty
and widespread acceptance by X cl ient developers usually be-
come public protocols.

The wM_pRorocoLs property is formatted as a list of protocol
identi f iers. Many window managers, including mwm, keep track
of X cl ient changes to the property. This al lows an X cl ient to
part icipate only in those protocols that i t requires at a part icular
time. The wM-PRoTocoLS list can accommodate any number
and mix of publ ic and private protocols.

The wM DELETE-wlNDow protocol is a commonly used public
protocol. This protocol is used to inform X cl ients that a request
has been made (probably by the user) to get r id of an X cl ient
window. This protocol is used by window managers to implement
a clear and consistent user interface for gett ing r id of windows.
Typical ly, delet ing a window also includes delet ing the X cl ient
that is associated with the window. Mwm uses the WM-DELETE-

(cont nued irom page 22)

dow is grayed out if the menu is posted in the icon

context.
A menu is placed in keyboard traversal mode to allow

keyboard manipulation of the menu. However, if a menu

is not posted using a key press, the menu is not placed

in traversal mode.
A menu is configured to have particular key and button

events select a menu item and unpost the menu.

A menu is posted at a part icular screen posit ion [e.g. '
below the window menu button in a window frame).

Mwm keeps track of the currently configured characteris-

tics of a menu and does the minimal amount of adiust-

ment that is necessary before posting the menu.

Component Graphics
The window frame provided by mwm for decorating client

windows consists of a number of components representing

different window management functions. The functional-

ity and layout of the components are the same as in Presen-

tation Manager. However, mwm enhances the appearance

of the frame by adding the 3D appearance.

It is important for mwm to be as fast as possible to imple-

ment a good direct manipulation interface. The two princi-

pal things that were done to speed up the graphics render-

ing were to minimize the number of X protocol requests

to draw the frame, and to do all the drawing to one window.

A fully configured mwm window frame consists of a bor-

der and a title bar. The border is divided into eight resize

handles. The t i t le bar is divided into boxes (or gadgets) for

the system menu, the t i t le text, and the minimize and

maximize functions. The height of the title bar and the

drawings inside the gadgets are scaled to match the height

of the font used for the text in the title bar'

A frame with the 3D look may have as many as four

colors displayed at once. These are the background' the

foreground (t i t le text), and the top shadow and bottom

shadow colors (see Fig. 12). The background color makes

up the majori ty of the color visible in a frame. Mwm sets

the background color of a frame by setting the background

attribute of the frame window. The background of all the

frame components is set in one X graphics cal l ' Once this

attribute is set, the X server takes care of painting the back-

ground of the window in response to exposure events.

Graphic contexts are used to store much of the informa-

24 lewrrrr-pecKARD JOURNAL JUNE 1990

wtNDow protocol to close a window. The mwm close function can
be accessed from the standard window menu that is posted by
pressing the window menu button in the cl ient window frame. l f
the close function is invoked on a cl ient that does not part icipate
in the wM-DELETE-wlNDow protocol, mwm uses the X request
xKil lcl ient to get r id of the window and terminate the cl ient. In this
case the cl ient f inds out that i t has been terminated but cannot
prevent or delay the termination. This is not appropriate tor cl ients
that would l ike to interact with the user on termination, or cl ients
that have mult iple windows that can be independently terminated.
lf a client does participate in the wM-DELETE-wlNDow protocol,
mwm sends a termination request message to the cl ient indicating
that the window is to be terminated. l t is then up to the cl ient to
determine how to deal with the window, because mwm takes no
further act ion. Well-behaved cl ients immediately remove the win-
dow from the screen or prompt the user lor confirmation.

tion required by the X graphics routines. This includes

items such as colors, I ine styles, and cl ip regions. Mwm

creates several graphic contexts for use in drawing the

frame. These graphic contexts may differ in foreground

color and fill tile. They are created when the window man-

ager starts up and are used for all the window frames. When

mwm draws a differently colored part of the frame, it passes

a different graphic context to the graphics drawing routine.

The title text is usually drawn in one XDrawString call

using the graphic context containing the foreground color.

If the text is too long for the available space, then the text

is truncated by setting a clip rectangle into the graphic

context before calling XDrawString.
The remainder of the frame is made of the top and bottom

shadow colors. This includes the outer 3D shadowing, the

separations between the resize handles, the edges of the

title bar buttons, and the images inside the system
minimize and maximize buttons. This drawing is done
with only two cal ls to XFil lRectangles.

XFillRectangles takes, among its arguments, a list of rectan-
gles and a graphics context. Mwm generates two lists of

rectangles for top and bottom shadows when a frame is

built. This occurs whenever a frame is needed for a new

window, or when a window has been resized. To make

this task simpler to code, two helper routines were con-

structed to add data to an existing pair of lists. One routine

adds the top and bottom shadows to construct rectangular

features. The other routine adds the top and bottom

shadows to construct the corner resize handles. The

shadowing for the entire frame is constructed out of mul-

t iple cal ls to these two routines.
Mwm always redraws the entire frame in response to an

exposure event. In the best case, this takes three X graphics

cal ls for drawing the text and the top and bottom shadows.

If the text is cl ipped, then two more X cal ls are required

for sett ing and clearing the cl ip rectangles. I f the back-

ground color of the frame changes, then two addit ional

calls are needed to set the frame window background attri-

bute and clear the window to the new background. The

common case of sett ing or clearing the focus indication on

a window frame takes f ive X graphic cal ls.
The performance of this frame redrawing algorithm has

been adequate. A possible optimization would make the

exposure event handling smarter by only drawing those

Top
Shadow

Bottom
ShadowForeground Background

areas that need to be drawn. This would require either
generating a new list of rectangles for the exposed region,
or picking out the affected rectangles from the list of rect-
angles for the whole frame. Since X drawing calls map into
X protocol requests (which can be computationally expen-
sive), the optimization would have to avoid generating
more X protocol requests than the approach taken above.

Testing a Window Manager
Mwm has a programmatic interface that is used by clients

and an interactive interface for users. The testing of mwm
needed to cover both of these interfaces. The approach to
testing the programmatic interface involved writing a
number of special-purpose clients that systematically gen-
erated all of the events that the mwm programmatic interface
handles. These programs were run for each regression test
as mwm progressed through its various development re-
leases.

The testing of the interactive mwm interface required a
much different approach. The interactive nature of the in-
terface precluded the use of test programs. Testing could
have been accomplished by developing test scripts that
testers would follow for each regression cycle and each
tested hardware configuration. However, this is an ex-
tremely tedious and expensive approach to testing.

Fortunately the Xtm (X test monitor) testing tool was de-

Fig. 12. The four colorc involved
in achieving the 3D look for a
frame.

veloped for testing interactive X clients. Xtm is based on
the record-replay software testing technique.a'5'6 In this
technique human interactions with the system are recorded
in a file and replayed later for regression testing. Xtm records
all mouse and keyboard interactions and saves them in an
interactive test script file. The tester can at any time save
snapshots of all or part of the screen. For regression testing
the Xtm interactive test scripts can be replayed. Xtm com-
pares the saved screen images with the replay screen images
and flags any differences. A tester only has to spend time
recording the interactive test script and checking the results
of the automated regression tests. Use of Xtm also allowed
repeatable testing. A user could not be expected to move
a pointer in exactly the same way or remember what a
screen looked like down to a single pixel each time a test
script is followed.

Mwm testing also benefited from the wide distribution it
received through OSF. Mwm was made available to a sizable
number of people at OSF member companies including
HP. These users had a variety of software and hardware
environments as well as different patterns of use and expec-
tations from a user interface. Their input provided a useful
adjunct to the testing done using Xtm.

Acknowledgments
We would like to acknowledge all those that helped with

JUNE i 990 HEWLETT-pACKARo JouRtar 25

the development of mwm. First are the other members of
the mwm (and hpwmJ team: project manager Karen Helt, Fred
Handloser, and Paul McClellan. Shizunori Kobara's help
was instrumental in designing a good-looking window
frame. Finally, we would like to acknowledge the Open
Software Foundation for its vision in promoting industry
standards and for picking hpwm as the basis for the OSF/
Motif window manager.

References
1. F. E. HalI and J. B. Byers, "X: A Window System Standard for

Distributed Computing Environments," Hewlett-Pockord /ournol,
Vol. 39, no. 5, October 1988, pp. 46-50.
2. Hewlett-Packord /ournol, Vol. 40, no. 6, December 1989, pp.
6-46.
3. Ibid, pp. 33-38.
4. C.D. Fuget and B.f. Scott, "Tools for Automating Software Test
Package Execution," Hewlett-Packard /ournal, Vol. 37, no. 3.
5. K.A. Olsson and M. Bergman, "A Virtual User Simulation Util-
ity," Hewlett-Pockord /ournol ,Yo1.39, no.2, April7988, pp ' 48-53.
6. M.R. Tuttle and D. Low, "Videoscope: A Nonintrusive Test

Tool for Personal Computers," Hewlett-Packord /ournol, VoI' 40,

no. 3, June 1989, pp. 58-64.

Programming with HP OSF/Motif Widgets
The HP OSFlMotif widget library makes it easy for a
developer to create applications with a graphical user
interface that has a consistent appearance and behavior.

by Donald L. McMinds and Beniamin J. Ellsworth

HE X WINDOW SYSTEM (usually referred to simply
as X) is widely recognized as the industry standard
window system f or UNlX-system-based workstations

X's greatest attribute is the fact that applications written

for one vendor's platform will run on almost any other

platform without modification. X provides a root window

within which smaller windows can be displayed' A number

of applications can be run simultaneously and each appli-

cation can have any number of windows. A workstation

screen with a typical assortment of windows is shown in

Fig. 2 on page 7.
The X Window System is composed of a set of library

functions known as Xlib. Xlib is the heart of X and it can

be compared to an assembly language. Like assembly lan-

guage programming, creating a user interface using only

Xlib can be tedious and cumbersome (an example of Xlib

programming is provided later in the article). To overcome

this problem, the X designers created a second set of func-

tions called the Xt Intrinsics or the X toolkit. The Xt Intrin-

sics use the Xlib functions to provide a higher-level set of

functions that make user interface programming easier. The

next library in the hierarchy, widgets, was designed to use

both Xlib and the Xt Intrinsics to relieve the programmer

of much of the extra work required to use these functions'

The relationship between the two sets of X functions (Xlib

and Xt Intrinsics) and widgets is much the same as the

relationship between a computer's assembly language and

a high-level Ianguage such as C.
The user communicates with X through the window

manager. Depending on the request, the window manager

communicates directly with one of the lower-level compo-

nents in the hierarchy shown in Fig. 1 or with the X client.

The window manager is really just another X client (al-

26 newlEtT-plcxARD JoURNAL JUNE 1990

though admittedly a very special one).
The box on page 27 provides more information about

the evolution and development of widgets. This article

describes some characteristics of the HP OSF/Motif widget

library and shows how to write a program using this library.

Widgets
Widgets provide a base upon which the programmer can

build an application user interface that has a consistent

behavior and appearance. Widgets have a hierarchical class

structure. Each widget has some resources of its own and
(continued on Page 29)

Fig. 1. Ihe X Window Systern and other components in the

OSF|Motif environment. The dashed line indicates that othel
X c/lents can either be managed by the window manager ol
run independently of the window manager.

The Evolution of Widgets

The development and acceptance of any new technology in
the software industry as a standard is an evolutionary process
that is driven by such things as competit ion, new technologies,
and the desire for interoperability over a wide variety of hardware
platforms. This is the case with HP's OSF/Motif widget toolkit.
This toolkit and the Xt Intrinsics were developed to provide a
standard set of tools for implementing user interfaces for UNIX-
system-based systems running in the X Window System environ-
ment.

Fig, 1 showsthefamilytreeforwidgets in relat iontothedifferent
versions of the Xt Intr insics used to implement them. The Xt
Intr insics are the foundation upon which many user interface
toolkits that run in the X Window System have been developed.
The Xt Intrinsics began as the result of a collaboration between
HP and Digital Equipment Corporation in late 1986 and early
1987. At the end of this period, the Xt Intr insics were contr ibuted
to the X Consortium.'The X Consortium accepted the Xt Intrinsics
as a nonexclusive standard for the creation of user interface
toolkits for the X Window System environment.

The f irst f reely available set of software objects (widgets) based
on these early intrinsics was done by Project Athena at N4as-
sachusetts Institute of Technology. The Athena widgets, because
they were the f irst widgets and their development was not particu-
larly profit motivated, had a few bugs and did not offer much in
terms of functionality. The Athena objects provided only buttons,
scroll bars, editable and noneditable text, and boxes to contain
them. Perhaps more important than the functionality, the Athena
wadgets presented a basic model of interaction supported bv
the Xt Intr insics.

HP's First Wldgets
HP's first X Window System user interface toolset was called

x-ray. Xray was written in the C language and tailored to run in
version 10 of the X Window System. Although this was a good
toolset by everyone's estimation, it was realized that tools built
on a standard base such as the Xt Intrinsics would have a better
chance of long-term success. Therefore, x-ray was abandoned
and work began on the HP X widgets, or as they were evenlual ly
cal led, CXI (common X interface) widgets.

HP's experience with x-ray helped to determrne the feature set
necessary for a successlul user interface toolkit. Although we
knew what we wanted to provide the customer, we were novices
in using Xt Intr insics. To accelerate our code production, the
Athena widget code was used as the basis for the f i rst widgets.

Simple widgets were created using a combination of the func-
tionality inherited from methods in the core class widgets and
the features provided in exist ing widgets. For this reason, many
HP widgets started as a copy of an exist ing simple widget (the
Athena label widget and the CXI button widget were the most
commonly used). The core class methods were then modified
unti l the desired change in functional i ty was achieved.

For more complicated widgets, two approaches were used.
Either a simple widget was repeatedly modif ied unti l the complex
functionality was achieved (the title bar widget is an example of
this), or a closely paral lel Athena widget was reworked and de-
bugged as necessary (text and paned widgets are examples of
th is) .

The New Generation
The key features that differentiated the CXI widgets from the

Fig. 1 . Ihe widget family tree. Dif-
ferent improved yerslons of the Xt
lntrinsics were used to implement
different yerslons of the widget
family,

JUNE r990 HEWLETT-pAcKARo touRrunr 27

Athena widgets were keyboard traversal, a configurable menu
system, and Presentation Manager behavior. Keyboard traversal
is keyboard-only operation of the user interface without touching
the mouse. As an example, consider a property sheet or a data
entry form that contains numerous f i l l - in-the-blank f ields. In the
model presented by the Athena widgets, the user had to move
the mouse every time there was a need to move to a different
f ield. Touch typists complained that reaching for the mouse inter-
rupted them to such a degree that they felt the interface was
unusable. By offering keyboard traversal, the CXI widgets pro-
vided a way to navigate through the interface without ever having
to leave the keyboard.

The most significant evolutionary ieature of the CXI widgets,
certainly in terms of product strategy, is the Presentation Manager
behavior. Presentation Manager is itself a user interface that has
evolved from Microsoft Windows and is characterized by a base
set of graphical controls with consistent behavior. While the X
Window System is primarily for the technical workstation market,
much of the technical workstation market comes from users mov-
ing from personal computers to workstations. Often PC users are
hesitant to move to technical workstations because the software
environment appears foreign and therefore is presumed hostile.
To make the move from oersonal computers to workstations
easier, programs writ ten using the CXI widgets present the user
with an interface that behaves verv much like Presentation Man-
ager.

A New Dimension in Widgets
ln 1988 we discovered that we needed to have a unioue visual

appearance for our widgets. This resulted in the development
of widgets with a 3D appearance (see Fig. 2). This look was
different enough to be considered proprietary. At this point we
had two widget l ibraries: a 2D widgets l ibrary, which was contr ib-
uted to the public domain, and a 3D widget l ibrary, which was
proprletary. The 2D version of widgets, which became known as
Xhp widgets, provided the basis for the XT+ toolkit from AT&T
Bell Laboratories.

Soon after the release of the CXI 3D widget library, revision 3
of the Xt Intr insics became avai lable. Since there is always the
urge to use the latest technology, a version of the CXI widgets
was implemented using the latest Xt Intrinsics. One of the prob-
lems with the earl ier version of CXI widgets was that i t imposed
the overhead of one window for every widget. Revision 3 of the
. The X Consortium is a group of companies that have joined together to promote

standards and enhancements lor the X Window System technology

Xt Intrinsics removed this problem by providing the ability to
support windowless objects.

Open Standards
With the formation of the Open Software Foundation (see box

on page B), the role of CXI widgets took on a whole new meanlng
In mid-1988 the newly formed Open Software Foundation re-
quested members from the entire computer industry to submit
proposals for a technology for creating an OSF user interface
environment. After this industry-wide solicitation and review pro-
cess, the OSF chose a hybrid of two proposals, both based on
widget technology. HP was contracted to do the engineering
work required to create this hybrid, the OSF/Motil widget set.

The OSF/Motit widget set is a combination of widgettechnology
from HP's CXI and Digital Equipment Corporation's XUl. This
hybrid provides the look and feel of CXI and the application
programmer's interiace of XUl, In late summer of 1989, version
1.0 of the OSF/Motif widget l ibrary was made avai lable. Al l of
the external features of the CXI widgets were improved upon
and incorporated into the OSF/Motif widgets. The three-dimen-
sional visual interaction clues were extended and made more
consistent. Keyboard traversal was extended uniformly through-
out the widget set and made almost entirely consistent with Pres-
entat ion Manager. Al l other graphical controls such as menus
and scroll bars were also made consistent with Presentation
Manager behavior.

One of the most significant contributions XUI made to the OSF/
Motif widget set was the addition of a rlch dialog layer. XUI
presents a large number of standard dialog boxes with a number
of standard behaviors. These dialog boxes have been made
visual ly consistent with CXI and behavioral ly consistent with Pres-
entat ion Manager.

A Process, Not a Result
OSF/Motif 1.0 is currently the top of the evolut ionary chain for

OSF/Motif widgets. However, the evolution of technology is much
more a process than a result. Changes to the OSF/Motif widget
set are already underuay with the development of even better
user interface components. More important, changes in the in-
dustry customer base and advances in such technologies as
graphics hardware, objecforiented programming, cooperative
work, and distributed networking will continue to change the
environment of the software industry and to provide a fertile soil
for widget evolut ion.

I BUTTON I A thena

I Burrotl cxr z-D

l s t CXIo n
J - U

BUITON Final CXI 3 D Fig. 2. The evolution of the ap-
pearance of widgets from 2D to
3D with the beveled look.

28 nEwren-plcKARD JoURNAL JUNE 1990

Program Output --..+

Top.Lsvel Shell ----af

Bulletln Board
Wldget

Pushbutton
Widget

can inherit resources from higher-class widgets. Resource
simply means a data name or variable whose value affects
some attribute of the widget. For example, there are re-
sources that control the size, color, and behavior of widgets.
Most widgets are visible in the form of a window. Examples
of widgets include various types of buttons, scroll bars,
menus, and dialog boxes through which information is
exchanged. Some widgets cannot be made visible and are
used as supporting superclasses. These widgets supply
common resources for the other widgets.

Fig. 2 shows how widgets are combined to produce a
window. The program output consists of a bulletin board
widget and a pushbutton widget. The program that pro-
duces this output is described later. The top-level shell
widget is an invisible widget that provides resources and
communicates with the X server.t The frame around the
visible output is provided by the OSF/lvlotif window man-
ager and is not a part of the widget system.

A widget is composed of procedures and data structures
that make use of the Xlib and Xt Intrinsics functions. The
functionality provided by the few lines of code needed to

Fig.2. Exploded view of widgets
in a program.

create a widget on the screen can only be duplicated with
many lines of code using Xlib and Xt Intrinsics functions.
While widgets save coding time and make a program much
easier to read and comprehend, the trade-off is that a widget
program uses a lot more memory than an Xlib program.
The program presented in this article uses nearly 6B0K
bytes for the executable widget version and 140K bytes for
the executable Xlib version.

Widget Hierarchy
The X toolkit defines widgets. To do so, it uses an object-

based architecture that groups widgets into different class-
es. Each widget class has data structures and procedures
(methods) that operate on the data. Widgets also define
what data can be imported and exported to the application
and what actions the widget supports. This set of data is
referred to as the resources of the widget class. A widget
is always an instance of some class. A pushbutton is a good
example of a widget class that defines resources common
to all pushbuttons. This class (XmPushButton) defines the
methods for manipulating pushbuttons (e.g., resizing), and
the set of data that can be imported and exported from any
instance of the class. For example, the pushbutton class
defines a resource called armColor. This resource controls
the background color of the pushbutton when it is armed.
This color can be modified in an instance of the pushbutton
widget class by manipulating the state of the background
resource of the affected widget instance.

The pushbutton widget class also defines the actions that
pushbuttons support. Instances of the pushbutton class
have three distinct states: armed, activated, and disarmed.
By default a pushbutton is armed when the pointer is with-
in the pushbutton area and mouse button 1 is pressed. A
pushbutton is activated by first arming the pushbutton and
then releasing the mouse button while the pointer is within
the armed pushbutton area. After the mouse button is re-
leased, the pushbutton is disarmed. All of these behaviors
are defined as part of the pushbutton widget class defini-
tion.

Any widget class can inherit some or all of the resources
of another class. For example, the pushbutton class con-Fig. 3. Baslc widget hierarchy

JUNE 1 990 HEWLETT-pAcKABo rounnar 29

tains resources belonging to the XmLabel, XmPrimitive, and
Core classes, as well as its own resources. Fig. 3 shows the

relationships among the basic widget classes. Label and
pushbutton are primitive widgets. There are other primitive

widgets besides label and pushbutton but they are omitted
from Fig, 3 for clarity.

The basic widget class is the Core class. It contains re-
sources that are inherited by all other classes. Each lower

class can inherit some or all of the resources belonging to

a higher class. The resources belonging to a given widget

class can be determined by examining its man page in the
HP OSF/Motif Progrommer's Reference Monuol.

A Widget Program
The following program illustrates the use of widgets in

a program. The program consists of a pushbutton widget

that is contained in a bulletin board widget. Selecting the
pushbutton causes a message to be displayed on the termi-
nal window and then the program terminates. The program

is called xmbutton.c and the output from the program is

shown in Fig. 4.

:::
file: xmbutton.c

::.
project: Motit Widgets example programs

:::
description: This program creates a PushButton widget.

o Copyright 1989 by Open Software Foundation,

:::
Inc. All Rights Reserved.

:::
o Copyrisht 1989 by Hewlett-Packard Company.

-----------------------------Y

/' include header files */

#include <X1 1 / lntr insic.h>
#include <Xmixm.h>

#include <Xm/Bullet inB.h>
#include <Xm/PushB.h>

/' functions defined in this program 'l

void main0;
void activateCB0; /- Callback for the PushButton '/

/. global variables -l

char -btn-text; i. button label pointer for compound string -/

** main - main logic for xmbutton.c program

void main (argc,argv)

unsigned inl argc;
char' .argv;

{
Widget toplevel; /- Shellwidget

Widget bboard; /-BulletinBoardwidget
Widget button; /tPushButton widget
Arg argsl| 0]; /-arg list
register intn; /.argcount

/" initialize the Xt Intrinsics 'l

toolevel : Xtlnitialize
("main", "XMbutton", NULL, NULL, &argc, argv);

/' Create a bulletin board widget in which the pushbutton widget ./

l* can be placed -/

n : 0 ;
bboard : XmcreateBulletinBoard (toplevel, "bboard",

args, n);
/* Manage the bulletin board widget'/

XtManagechild (bboard);
/* Create a compound string for the button text ./

btn-text : XmStringCreateltoR
(..PUsh HeTe'', XmSTRING.DEFAULT-CHARSET);

/. set up arglist -/

n : 0 ;
XtSetArg (argslnl, XmNlabelType, XmSTRING) ; n + + ;
XtSetArg (args[n], XmNlabelstring, btn-text) ; n + + ;

create button 'l

button : XtcreateManagedwidget
("button", xmPushButtonWidgetClass,bboard, args, n);

add callback -l

XtAddCallback (button, XmNactivatecallback, activatecB,
NULL);

realize widgets */

XtRealizewidget (toplevel) ;
orocess events '/

XtMainloop 0;
]
l"----------

activateCB - callback for button

void activatecB (w, clienLdata, call-data)
Widgetw; /. widget id

caddrj clienLdata; /- data lrom application

caddrj call-data; /. data from widget class

1

/. print message, free compound string memory, and terminate
program "i

printf ("PushButton selected.n") ;
XtFree(btn-text);
exit (0);

l

There are nine steps in writing widget programs. These
steps are used regardless of the complexity of the program.

The nine steps are:

1. Include the required header f i les.
2. Init ial ize the Xt intr insics.
3. Add addit ional top-level windows, i f needed.
4. Create argument lists for the widget.
5. Create the widget.
6. Add cal lback procedures.
7. Realize the widgets and loop.
8. Compile and l ink the program.
9. Create the defaults files.

30 HEWLEn,PACKARD iouRNAL JUNE 1990

widget that will serve as the parent (or top level) widget
for the application widgets. The call to Xttnitiatize in xmbutton.c
is :

toplevel : Xtinitialize ("main", "XMbutton", NULL, NULL, &argc,argv);

The first two parameters, "main" and "XMbutton", are used
to reference defaults files, which are ASCII files used by
the system to set the values of widget resources. Defaults
files are explained in more detail later in this article. The
next two parameters are set to NULL since they are not used
in this example. The last two parameters, &argc and argv,
are the number of command-line parameters and the array
in which they are stored.

The syntax for Xtlnitialize is:

Xtlnitialize (shell_name, app_class, options, num_options, argc, argv)

Fig.4. Output from the program xmbutlon.

Steps 4 through 6 are done for each widget included in
the program. The next nine sections relate these steps to
the program xmbutton.c.

Include Required Header Files
Some common variables and types of variables used by

the widgets are defined in header files. The necessary
header files are included at the beginning of the program.
These header f i les are:

#include <stdio.h>
#include &<X1 1 /lntrinsic.h>
#include &<Xm/Xm.h>
#include &<Xm/widget>

Replace widget with the name of the corresponding widget
header file for each widget class used in the program. The
include files for all widgets are found in the directory /usr/in-
cludeiXm. The header file name for each widget can be found
in the synopsis section of each widget's man page. The
order in which header files are placed is very important.
This order must be:
I General header files, such <stdio.h>
I Xt Intrinsics header files, such as <X1 1/lntrinsic.h>
r Widget header files, beginning with <Xm.h> and includ-

ing a header file for each widget class used in the pro-
gram. The order within the widget header files is not
critical.

For xmbutton.c, the include files are:

#include <X l 1 /lntrinsic.h>
#include <Xm/Xm.h>
#include <Xm/BulletinB.h>
#include <Xm/PushB.h>

Note that there is an include file for the bulletin board
widget and one for the pushbutton widget.

Initialize the Xt Intrinsics
The Xt Intrinsics must be initialized before any other

calls are made to Xt Intrinsics functions. The most conve-
nient method of accomplishing this is to use the function
Xtlnitialize. This function establishes the connection to the
X server, parses the command line that invoked the appli-
cation, loads the resource data base, and creates a shell

Type

Slring
String
XrmOptionDescRec
Cardinal
Cardinal
String

where:

Parameter

shell_name;
app-class;
options[];
num_options;
.argc;

argvl];

I shell-name specifies the name of the application shell
widget instance.

r app-class specifies the class name of this application.
r options specifies how to parse the command line for any

application-specific resources.
I num-options specifies the number of entries in the options

list.
I argc specifies a pointer to the number of command line

parameters.
r argv specifies the address of the command line parame-

ters.

Adding Additional Top-Level Windows
Xtlnitialize can be executed only once in any program, so

to create additional top-level widgets the functions
XtOreateApplicationShell or XtAppcreateshell must be used.
XtAppCreateshell allows the creation of a user-defined display
while XtCreateApplicationShell uses the default display.
XtCreateApplicationShell is from an earlier version of X, so it
is probably better to use XtAppCreateShell. Xmbutton.c does not
use a second top-level shell so neither of these functions
appears in the program.

Creating Argument Lists and Widgets
The next step in the program is to create widgets. In most

cases this involves setting widget resource name-value
pairs into an argument list and then calling a create function
for the widget. A name-value pair is a resource name and
the value assigned to that resource. For example, the re-
source name labelstring might have a string value "ABCD"
assigned to it.

There are two methods to create widgets. The first
method involves using convenience functions, and the sec-
ond method involves using generic Xt Intrinsics. Conve-

JUNE 1 990 HEWLETT-pAcKABD JoUBNAL 31

nience functions, which are part of the widget library, are
used to create a specific type of widget. For example,
XmcreateBulletinBoard creates an instance of a bulletin board
widget and XmCreatePushButton creates an instance of a
pushbutton widget. Widgets created with Xt Intrinsics are
automatically managed when they are created. However,
widgets created with a convenience function must be man-
aged with the function XtManageOhild or XtManageChildren.
Managing widgets this way provides some flexibility and

saves time because a number of widgets can be created and
managed all at once.
Using Convenience Functions. In the program xmbutton.c,the
convenience function XmCreateBulletinBoard is used in the
following lines of code to create a bulletin board widget.

Create a bulletin board widget in which the pushbutton

widget can be placed
n : 0 :
bboard : XmCreateBulletinBoard(toplevel,
"bboard", args,n);

/- Manage the bulletin board widget '/

XtManageChild(bboard) ;

The variable n, which is used here to specify the number
of name-value pairs in the argument list, is zero, indicating
that there are no name-value pairs in the argument list.
The function XtManageOhild is used to manage the bulletin
board widget bboard.

The syntax for XmCreateBulletinBoard is:

Widget : XmCreateBulletinBoard (parent, name, args, num-args)

Type Parameters

Widget
String
Arglist
Cardinal

where:
r parent specifies the parent widget of the newly created

widget (toplevel in this example).
r name specifies the resource name for the created widget

(bboard in this example). This name is used for retrieving
resources and should not be the same as any other widget
that is a child of the same parent.

r args specifies the argument list for resource values.
. num-args specifies the number of arguments in args.

The syntax for XtManageChild is:

XtManagechild (child);

Type Parameter

widget child

where the parameter child specifies the widget to be man-
aged.

Using Xt Intrinsics. The pushbutton widget in xmbutton.c is

created using the Xt Intrinsic XtCreateManagedWidget. The

Iines of code associated with creating the pushbutton

widget are as follows.

32 newrerr pACKARD JoURNAL JUNE 1990

/* Create a compound string forthe button text 'l

btn_text : XmstringcreateltoR
("Push Here", XmSTRING_DEFAULT_CHARSET) ;

/- set up arglist '/

n : 0 ;
XSetArg(args[n], XmNlabelType, XmSTRING); n + + ;
XSetArg(args[n], XmNlabelstring, btn_text);n + + ;

f createbutton 'l

button - XtCreateManagedwidget
("button", xmPushButtonWidgetClass, bboard, args,n) ;

The call to the widget library function XmstringCreate has
nothing to do with creating a widget, but it does set up a
compound string for the pushbutton label. A compound
string is designed to allow any text to be displayed without
having to resort to hard coding certain language dependent
attributes. The variable btn-teld is a pointer for the com-
pound string "Push Here."

The Xt Intrinsic function XtsetArg is used to set up the
argument list. It sets the the values for specified widget
resources into an array that is subsequently accessed by
the widget when it is created. The syntax for XtSetArg is:

XtSetArg (arg, name, value)

Type

Arg
String
XtArgVal

Parameters

arg;
name;
vatue;

where:
r arg specifies the name-value pair to be set.
I name specifies the name of the resource.
r value specifies whether the value of the resource will fit

in a long integer (xtArgval is defined to be of type long int
in an Xt Intrinsics header file); otherwise, it specifies
the address.
The intrinsic XtOreateManagedWidget creates a pushbutton

widget that has the name button and the bulletin board

widget bboard as its parent. Note that creating a widget

merely creates the data structures associated with that
widget. It does not make the widget visible on the screen.

The syntax for XtCreateManagedWidget is:

Widget : XtCreateManagedWidget (name, widgelclass, parent, args,
num-args)

Parameters

name;
widget-class;
parent;

args;
num_args;

The parameters name, parent, args, and num-args specify
the same values as their counterparts in the convenience
function XmCreateBulletinBoard. The parameter widgelclass,

which is of type WidgetClass, specifies the widget class
pointer for the created widget.

parenr;
name;
args;
num_args;

Type

String
Widgetclass
Widget
ArgList
Cardinal

Adding Callback Procedures
Callbacks are procedures that are executed when certain

events occur within a widget. Events such as pressing a
mouse button, pressing a certain key on the keyboard, or
moving the cursor into or out of a window can trigger a
callback procedure. Every widget has a callback list for
each type of callback it supports. This list contains the
callback procedures to be executed when a particular event
occurs. For example, every widget supports an XtNdestroy-
Callback list. Each callback procedure in this list is executed
before the widget is destroyed. Information on the callbacks
supported by a given widget can be found in the man page
for that widget and any supporting superclass widget that
supplies resources to it. There are two steps involved in
adding a callback procedure: writing the callback proce-
dure and adding the callback procedure to the callback list.

Writing a Callback Procedure. A callback procedure re-
turns no value and has three arguments:
r The widget for which the callback is applicable.
I Data passed to the callback procedure by the application.
I Data passed to the callback procedure by the widget.

In xmbutton.c, the callback procedure activateOB prints a
message to the standard output (this is normally the termi-
nal window from which the application was executed),
frees the memory used by the compound string stored in
the variable btn-text, and ends the program by executing the
system exit procedure. The callback procedure is just like
any routine or procedure except that it is called only when
the event to which it is tied occurs. In xmbutton.c, the activate-
CB callback procedure is executed when mouse button 1
is pressed and released and the mouse pointer is located
within the pushbutton window. It is the release of the
button (an event known as Btnl Up) that causes the pushbut-
ton to be activated and the callback procedure to be exe-
cuted.
Adding the Callback Procedure to the Callback List. The
callback procedure is added to a specific callback list that
is owned by the widget. This is done by using the Xt Intrin-
sics function XtAddCallback. In xmbutton.c the callback Droce-
dure is added with the code segment:

/' add callback -/

XtAddCallback (button, XmNactivateCallback, activateCB, NULL);

The syntax for XtAddOallback is:

XtAddCallback (w, callback-list, callback, clienLdata)

Type

widget
String
XtCallbackProc
caddr-t

where:

Parameters

w;
callback_list;
callback;
clienldata;

r w specifies the name of the widget to which the callback
procedure is to be added.

r callbaclclist specifies the callback list within the widget
to which the callback procedure is to be added.

r callback specifies the name of the callback procedure to
be added.

r clienLdata specifies the client data to be passed to the
callback when it is executed.
Note that the callback is added after the widget has been

created with XtCreateManagedwidget. This is necessary be-
cause one of the parameters for XtAddCallback is the pushbut-
ton widget known as button. An error would occur if a
callback is added to a widget that does not exist.

Making the Widget Visible
Even though we have created a widget and added a

callback procedure to one of its callback lists, if we were
to compile and execute the program at this point, nothing
would be visible on the screen. This is because we have
not passed the essential information about our widgets to
the Xt Intrinsics functions that actually display the widgets
on the screen. This is accomplished by using the function
XtRealizeWidget.

The final step in the program is the call to the Xt Intrinsics
XtMainloop. XtMainLoop is really an event loop. As events
occur, this function dispatches them and then searches or
waits for the next event to occur. In our simple example,
only the one event BtnlUp has any meaning. The window
shown in Fig. 4 will remain displayed indefinitely until
the pushbutton is pressed by moving the mouse pointer
into the button window and pressing and releasing mouse
button 1.

In the program xmbutton.c, displaying the widget and loop-
ing are performed in the code segment:

/' realize widgets -/

XtRealizeWidget (toplevel) ;
/' process events *i

XtMainloop 0;

Notice that there is no exit in the main part of the pro-
gram. Program termination is taken care of in the callback
procedure activateOB.

Compil ing and Linking
For compiling and linking the program xmbutton, one of

the following command lines is used.
r For HP 9000 Series 300 computers use:

cc -O -Wc, -Nd4000 -Wc, -Ns4000 -Wc, -Nt5000 -DSYSV -o\

xmbutton xmbutton.c -lXm -lXt -lXl1
r For HP 9000 Series 800 computers use:

cc -0 -DSYSV -o xmbutton xmbutton.c -lXm -lXt -lXl1

The libraries Xm, Xt, and X1t, which are linked into the
program, must appear in the order shown. Xm is the widget
library, Xt is the intrinsics library, and Xt t is the Xlib func-
tions.

Creating Defaults Files
In the example above, the values of certain widget re-

sources have been set by means of argument lists within
the program. Another method of setting resource values is
by means of ASCII files called defaults files. These files
are automatically read by the system before executing a
program. There are two types of defaults files: an app-defautr
file and a user-specific file called .Xdetautts.
ApfDefault File. This file is located in the directory /usr/tib/
X1 1/app-defaults and supplies defaults for an entire class of
applications. The class is specified in the call to Xttnitiatize.

JUNE r990 HEWLETT-PAoKARD JoURNAL 33

'lontList:
*shadowThickness

!
! BulletinBoardresources
!
'bboard.resizePolicy:
-bboard.height:
-bboard.width:
*bboard.background:

!
! PushButtonresources
I

*button.foreground:
'button.background:
'bufton.borderWidth:
-button.height:
.button.width:
'button.x:
'button.y:

!

For example, the call to Xtlnitialize in xmbutton.c specifies the
application class XMbutton (by convention, application class

names are the program name with the first two letters

capitalized). The app-defaults file XMbutton contains resource
values for certain widgets that are used in the program

xmbutton.c. An example of such a file is shown below.

! XMbutton app-defaults file for Motil demo program xmbutton.c
! general appearance and behavior defaults
!
!

The order of precedence for setting values in widget re-
sources is:
I The app-defaults files
I The .Xdefaults file
r The values that are set in the program.

This means that values set in an app-default file can be
overridden by an .Xdefaults file and values set in an .Xdefaults
file can be overridden by values set in the program.

An Equivalent Xlib Program
A program using Xlib and Xt Intrinsics functions rather

than widgets to produce our pushbutton and bulletin board
combination would take nearly four pages of code. For this
reason, only a portion of the equivalent Xlib program is
presented here.

The previous section discussed defaults files as a means
of setting the value of a widget's resources. If widgets are
not used then defaults files cannot be used. For example,
in xmbutton.c we used a single line in an .Xdefaults file to set
the background color of the pushbutton widget:

Button.background: goldenrod

Similar entries were made in the defaults files to set
values for other resources. Without widgets, setting up re-
source values requires several lines of code in the applica-
tion program. For example, to set the background color in
an Xlib program, the color must first be allocated and then
used as one of the arguments to the function XCreate-
Simplewindow. The following code segment shows what this
involves:

#include <X1 1/Xlib.h>
#include <X1 1 /Xutil.h>
#include <stdio.h>

#defineOFF0
#define ON 'l

#define FALSE0
#defineTRUE 1

Display'dpy;
Window parent, child, root;
GC shadow_gc, texlgc;
unsigned long sky-blue, lt-blue, goldenrod, wheat, dlcgrey,
white, black;
intscreen;
XFontstruct.fptr;
Colormapcmap;

main(argc, argv)
int argc;
chartargv[];

{
XColor hard_def, exacldef ;
XSizeHints xsh;
XEventevent;
intstate : OFF,tx,ty,status, pressed : FALSE;

/" Open the display'/

if ((dpy : XOpenDisplay(NULL)) : : NULL) {

hp8.8 x 16b
3

RESIZE_NONE
150
250
skyblue

midnight blue
goldenrod
0
30
100
75
60

Xtlnitialize uses the data contained in XMbufton to build a
resource data base before the widget is actually created.
.Xdefaults File. This file can be created in each user's home
directory to set resource values for any number of programs.
Defaults found in this file override those in an app-default
file and allow different users to specify different values for
the same resources. For example, one user may prefer to
have different background and foreground colors from the
ones set in the app-default file. Note that the values in the
.Xdefaults file only override the app-default values. They do
not change them. Suppose you want to override the default
background and foreground colors for both the bulletin
board widget and the pushbutton widget in xmbutton.c. The
.Xdefaults file shown below changes the background of the
bulletin board to white, the background of the pushbutton

to red, and the foreground of the pushbutton to white. Note
that the colors are only changed for ihe program xmbutton.

xmbutton*button.foreground: white
xmbutton*button.background: red
xmbutton*bboard.background: white

The colors can be changed so that the background and
foreground colors are the same for every widget in xmbutton
with this .Xdefaults file:

xmbutton.toreground:
xmbutton.background:

white
red

34 HewLen-pacKARD JoURNAL JUNE 1990

fprintf(stderr,,,%s: Cannot open DlSplAyn,,, argv[oJ) ;
exit(1);

I
/. Set parametervalues ./

screen = DefaultScreen(dpy);
root = Rootwindow(dpy,screen);
cmap : Defaultoolormap(dpy, screen):
white = Whitepixel(dpy,screen);
black : Blackpixel(dpy,screen);

/'Create graphics contexts ./

texLgc : XCreateGC(dpy, root, 0, 0);
shadow_gc = XCreateGC(dpy, root, 0, 0);

/'Allocate colors -/

status : XAilocNamedCoto(dpy,cmap,,,SkyBlue,,,
&hard_def, &exacLdef);if (lstatus) {

fprintf(stden, ,,%s: Cannot allocate the neccessary colorsn,,,

,
argv[O]);exir(1);

etse
sky_blue : hard_def.pixel;

status : XAllocNamedColo(dpy, cmap,,.LightBlue,,,
&hard_def, &exact-def); if (status) i

fprintf(stderr, ,,%s: Cannot allocate the neccessary colorsn.,,
argv[0J); exit(1);
I

else

tt-blue = hard_flef.pixel;
/- Load font./
fptr : XloadeueryFont(dpy,,,hp8.Bxt 6b,,);
if (fptr : = NULL) {
fprintf(stderr, ,,7os: Cannot load the neccessary fontn,,, argv[O]);
exit(t);
l

XSetFont(dpy,rext-gc,f ptr_>f id) ;
/" Geometrycalculations./
ty = (30-fptr->ascen!fptr_>c,es cent)/Z + fptr_>ascent.
tx = (1 00 - XTextWidth(fptr,,,push Here,,, 9)) / 2;

xsh.x = 0;xsh.width : 250;
xsh.y = 9 r.6.neight = 150;
/- Create bulletin board equivalent./

parent = XoreateSimpleWindow(dpy, root, xsh.x, xsh.x, xsh.width,
xsh.height, 2, tt-btue, sky_btue) ;

I

Although there is mo:e.to this code than just allocating
colors, it is obvious that there i,

"
loi;;;;'il*,otrr"d trrur,is required when using widgets.

References
1. K.H. Bronstein et al, .,System

Design for Compatibility of a
Itrh;":*.T"nce Graphic_s Lit.u.y unj tr,u-;(Wiffi _ system,,,Hewlett-packardlournot, Vot. +0, no. 6, Dr;;;; ;;e, pp. 6_12.

H

JUNE 1 990 HEWLETT_pACKABo lounrrrnr 35

The HP softBench Environment: An

Architecture for a New Generation of

Software Tools
The HP SoftBench product improves programmer .
p r o d u cti v ity by i nte g r ati n g sofVv ar e d ev e I o p m e nt tool s i nto
,a

single unified environment, allowing the program

developer to concentrate on tasks rather than tools'

by Martin R. Cagan

- HE HP SOFTBENCH PRODUCT is an integrated soft-

I ware develoo*,"t environment designed to facili-

I ffi;;;' i;i".""ii"" prosram construction' test' and

-Jt t*urr"u in a distributed computing environment'
'^'iit"

Hp S"ftBench environment provides- an architecture

for integrating various CASE (computer-aided software en-

gt"""tr"g) tooils. Many of the tools most often needed-pro-

ilu*
"alio.,

static analyzer' program deb-ugger' program

ilild;il;;iL-"'"1;"tuaea i" the HP softBench prod-

;:;;,h"t lIP SoftBench component' the HP Encap-

sulator, makes it possible to integrate other existing tools

t"a il; ritsoftnlnch environment and to tailor the envi-

;;;;; to a specific software development process' Fig'

1 illustrates the FIP SoftBench user interface' --
ittJ *arcf" describes the HP SoftBench tool integration

ur"ftii""t t."' The HP SoftBench program editor' static

ili;;, ;;"gram deb'gger' program-buildcr',and mail are

described in the article"Jn page ee. The HP Encapsulator

is described in the article on page 59'

Design Obiectives--ii-.
o"t*U goal of the HP SoftBench product is to im-

p.;;; ,h" prod"uctivity of programmet: dot-lq-toft-are de-

velopment, testing, a"d taittienance' To achieve this goal'

it, toffo*irrg objectives were defined for the tool integra-

tion architecture:
(continued on page 38)

i lar""tpotn," Executlon Trace show Help

a* iIJ*-'/"; r s/ca ga n/P r o j c c t T os e r / t os c r

PC: min Fic: min. c Liru: 35 DcPth: 0

Fi le hp f cnrc : /uscrs /cagan/Pro
j ec t /Torc r

References ()

Declarat ions ()

Def ini t ion ()

u s e s ()

l,lorlificationt ()

m l n (! r t c , a r g v)
i n t . r B c ;
c h a r x a r g v [] ;

{
wiagot @. bboard' audio-

i n t n - 0 ;

p l n [1] . r i n g - c o u n t ' C o u x T t

p i n [2] . r i n g - c o u n t ' u ;

; i n [3 l . r i n a - c o u n t ' 8 ;

p i n I t] . I o c r t i o n - P I N l - x ;

*1". " !!gl, *i l ff i l" i i"s"",it."pr"
*].." j::1, ::il-'"""'""": ;: l;;it:

Pattern Match ()

r u i n (a r g c , a r g v)
i n t ' r t c ;
c h a r * a r g v [l ;

tt
widg"t @ bboard' audio-togglc ' start i

i n t n - 0 ;

pinl1] . t ina-count - COUIIT;

p i n [2] . r i n B - c o u n t - u i

p t n l : l . r l n e - " o " " t - 8 ;

Fig.1. TYPical HP SoftBench user

inErtace.

36 Hewlrrr-pncKARD JoURNAL JUNE 1990

Architectural Support for Automated Testing

The importance of software testing does not have to be argued
anymore.' There also exists a relative wealth of sources describ-
ing various aspects of soitware testing. Unfortunately, most of
the published literature concentrales on elegant approaches to
limited suboroblems derived from traditional software (that is,
batch-oriented input/output). Additionally, the published body of
knowledge almost completely ignores the issue of how the testing
activity should fit modern project life cycles (reference 2 is a rare
exception).

This section is about testing a large software system: the HP
SoftBench product described in the accompanying art icle. The
goal is to describe both the process and the various tools and
utilities developed to exploit the architectural advances of the
HP SoftBench product to support the testing process.

The problem of testing a system such as the HP SoftBench
environment is difficult and therefore interesting. The problem
has the following major attributes:
r Development of the HP SoftBench system followed the spiral

life cycle3 which, because of its crucial aspect of rapid pro-
totyping, presents a real challenge for lormal testing.

r The formal testing activity started early in the project life cycle
and closely tracked the project development.

r The system being tested consists of several tightly integrated
tools and is event-driverr.

I The system has a sophisticated user interface (window-based
and mouse-driven).

r Black-box tests had to be automated (which in the case of
the user interface meant developing an "automatic user").

I The testing proceeded along an unorthodox path-from black-
box testing, through "grey-box testing" (driven by branch flow
and complexity analysis), to white-box test ing.

Automatic Regression Testing
Traditional testing methods focus on exercising and testing

programs by st imulat ing them using control led inputs and ob-
serving their outputs. l f the input and output sets are "well-be-
haved" (e.9., numeric values) then i t may be possible to prune
the test space using the techniques of equivalence part i t ioning
or boundary analysis.a

The HP SoftBench product presents a special challenge. lts
user interface is almost completely mouse-driven and makes
heavy use of hierarchically arranged windows. The system inte-
grates actions of several tools through a message interface. The
outpui is mostly visual. Final ly, the system can run in a distr ibuted
environment on many processing units and varying displays.

Automatic test ing of such a system implies the need for a
"robot tester," bl indfolded and handcuffed but capable of enter-
ing input and verifying output. One possibility is to operate at
the pixel level and generate required actions (pushing buttons,
etc.) at specific points on a screen. The verification of output
would then require taking screen snapshots and comparing them
with the expected screens. The problem is that this approach is
tied directly to the screen's appearance. A mere change in fonts
or other screen attr ibute (e.9., color scheme) would completely
inval idate this test ing approach. A higher-level approach is
neeoeo.

An HP SoftBench tool has two major interfaces: the user inter-
face (mouse/keyboard/window) and the message interface. We
used both interfaces to exercise and verify HP SoftBench be-
havior. To deal with the user interface challenge, we used two
mechanisms that al lowed us to st imulate inouts and reoister ouf

puts independently of screen parameters. On the input side we
identified inputs (buttons to be pushed or editing windows) not
by their screen coordinates but by symbolic names associated
with these objects. Thus, the automatic testing tools are able to
find some windowg no matter where that window is olaced on the
screen (or even if it is completely obstructed by other windows).
To obtain higher-level verification of outputs without resorting to
pixel-level screen dumps, we instrumented the code so that any
window could be probed and forced to dump its contents (strings
or a pointer posit ion in the case oi the edit widget, or a label in
the case of a button). This approach allows selective probing of
sofiware objects (very much like having testing probes in
hardware).

Testing Tools
Two companion testing tools were used to drive both HP

SoftBench interfaces-user and message. Tool A allows the tester
to send messages to the message server. lt can intercept mes-
sages and match them against a list of expected messages.
Tool A can also act on widgets. Tool A's companion utility, tool
B, is capable of automatically and interactively creating a test
file that mixes message and widget operations. This file becomes
the input to tool A.

Tool A allows the user to send messages to the message
server. Tool A will then wait for the tools to respond to the mes-
sages. The order in which the messages are sent and received
is restricted by a partial order relation given by the user. This
ordering can be total ly unrestr icted, str ict ly sequential, or any-
thing in between.

Tool A maintains an active list of commands as it runs a test.
As each command is executed it is removed trom the active |ist
and all of its successors are checked to see if they should be
added to the actlve list. A command is not added to the active
list until all of its predecessors have been executed.

Actions and Software Probes
Tool B can be used to log two types of events. lt can intercept

messages and it can also log operations on widgets into a test
f i le. Al l of the widgef based commands search X1 1's window
tree for the named widget at the time the command is executed.
The search is done at this time because windows are constantly
being created, destroyed, and moved about within the tree. The
search algorithm does a breadth-first search of the window tree
for the first name of the widget. As each match is encountered
a second breadthjirst search is started on the subtree of the
matched window, looking for the second name of the widget.
These searches continue until the tree is exhausted or all of the
names of the widget are found. The search algorithm remembers
that it has touched a particular applicatlon, and as a result all
the subsequent widget searches use that shortcut (resulting in
about a 90% speed-up in the search t ime).

When capturing tests with tool B, the tester can identify a
widget that needs to be probed at the test time. The information
dumped for a widget includes all text seen on the display, whether
the text is sensitive (grayed out), and whether it is set or marked
(only for menu buttons and toggles). This scheme allows us not
only to describe the events to execute the actions, but also to
specify what needs to be checked to verify that the actions hap-
pened correctly.

(continued on next page)

JUNE i 990 HEWLETT-PAcKARD JoURNAL 37

Supporting Utilities
Our tests were stored in the HP-UX revision control system

(rcs) and ran in the proprietary HP Scaffold testing harness.s We
used branch flow analysis (BFA) to monitor the coverage of the
code and to steer the testing activities.6 We combined the BFA
information (annotated source code) and the results of the com-
plexity analysis (McCabe's ACTT) to focus on tesling the areas
of the code that have high complexity and low BFA coverage
(grey-box test ing).

r Support integrated tool sets. The tools should cooperate
to present a task-oriented environment that lets users
concentrate on what they want to do, not how to do it.

r Support interchangeable tools. HP's CASE strategy is
based on the belief that there is no single solution appro-
priate for all users. The type of application being de-
veloped, the size of the team, the delivery constraints,
and the development methodology all impact the opti-
mal tool set. The integration architecture should permit
any tool to be replaced such that no changes need to be
made to the other tools and the new tools cooperate with
the other tools in the environment at least as well as the
original tools do.

r Support a distributed computing environment. The ar-
chitecture needs to support software development in a
distributed computing environment composed of combi-
nations of X terminals, workstations, midrange comput-
ers, and servers, possibly in geographically dispersed
locations. Tool execution, data, and display should all
be designed for a network environment.

r Leverage existing tools. Users need to be able to integrate
tools they already use, which they have either purchased
or developed, into their software development environ-
ment. To do so, they should not have to modify the
source code of any tool or change the other tools in the
environment.

r Support software development teams. The tools and ar-
chitecture should support team coordination and the
management of project files in a distributed development
environment.

I Support multiple work styles. The HP SoftBench product
should not dictate a single style of work. The style should
be based on the task. For example, if the user is primarily
doing maintenance the environment should be centered
around the maintenance task, and if the user is primarily
doing rapid prototyping, the environment should be cen-
tered around the program construction task.

I Support other life cycle tools. The HP SoftBench ar-
chitecture should facilitate the integration of additional
life cycle tools such as project management, documenta-
t ion, analysis, and design tools.

r Build on standards. The HP SoftBench architecture
should build on the UNIX* operating system, NFS and

UNIX rs a registered trademark of AT&T in the U.S.A. and other countries.

38 rrwrrrr-plcKARD JoURNAL JUNE 1990

References
1 . B.W. Boehm and P.N. Papaccio, "Understanding and Controlling Software Costs,"
IEEE Trcnsactions on Software Engineering, 1988.
2. R.A. Sulack, R.J. Lindner, and D.N. Dietz, "A new development rhythm for AS/400
software," IBM Systems Joutnal, no. 3, 1989.
3. B.W. Boehm, "A Spiral Model oI Software Development and Enhancement," /EEE
Computer, no.5, 1988.
4. G.J. Myers, The At7 of Soflware festmg, John Wiley & Sons, 1979.
5. C.D. Fuqet and B.J. Scott, "Tools for Automating Software Test Package Execution,"
Hewlett-Packard Journal, Vol. 37, no. 3, March 1986, pp. 24-28.
6. D. Herington, et al, "Sottware Verification Using Branch Analysis," Hewleft-Packard
Journal, Vol- 38, no. 6, June 1987, pp. 13-22.
7. T. Mccabe, "A Complexity Measure," IEEE Transactions on Softwarc Engineering,
Vol. SE-2, no. 4, December 1976.

sortware o"u",oor Ji,1 {;::!,
Software Engineering Systems Division

ARPA networking, the X Window System"u Version 11,
and the OSF/\4otif appearance and behavior.

Architecture Overview
We define a software engineering environment to be an

ensemble o/ tools thot colloborote to support the user's
softwore engineering process.t There are several types of
tool integration. The HP SoftBench tool integration ar-
chitecture concentrates on providing mechanisms that sup-
port tool collaboration in a distributed computing environ-
ment. This type of integration is often called control inte-
gration or process integration.

The architectural facilities provided by the HP SoftBench
product are complementary to those in other integration
architectures that concentrate on providing services for
sharing data between tools and managing data relation-
ships.2'3'a

Over the last several years, university and industrial re-
search laboratories have been addressing the issues of im-
proved software tool integration facilities.''t'u't The HP
SoftBench tool integration services are an implementation
of much of this research in a commercial product. There
are three primary components in the HP SoftBench tool
integration architecture:
r Tool communication
I Distributed support
I User interface management.

' I 'ool
CornIn un icat i t rn

HP SoftBench tools communicate in a networked envi-
ronment via a broadcast communication facility designed
to support close communication of independent tools.

In the UNIX operating system, tool communication is
typically limited to single-direction, point-to-point data
streams (pipes). In the HP SoftBench environment, tool
communication is two-way, one-to-many or many-to-one,
and event-driven.

Message-Based Application Program Interface
All HP SoftBench tools, as well as nonSoftBench tools

that have been properly integrated using the HP Encap-

X Window System is a trademark of the Massachusetts lnstitute ol Technology

Broadcast Message Server Message Structure

HP SoftBench tools communicate by sending messages, which
are dispatched by the broadcast message server (BMS) to
appropriate other tools. HP SoftBench messages have the follow-
ing structure:

Originator Request-id Message-Type Command-Class
Command-Name Conlext [Arguments]

originator. The originator is the tool that sent the message. How-
ever, by convention, this f ield is not used by the HP SoftBench
tools themselves because they do not send messages lo a par-
t icular tool, they send them to the BMS so that other tools in-
lerested in the events can be noti f ied.
Request-ld. The request lD is constructed from the triple (message-
number, process-id, host). This network-wide unique lD is used so
that responses can be associated with their original requests. In
other words, a notification sent as the result of a requesl has the
same request lD as the original request to which i t is responding.
Message-Type. The defined message types are:

R : Requestmessage
N : Success notification
r : Fai lure noti f icat ion.

sulator, provide access to their functionality through a mes-
sage-based application program interface (API). Any action
that can be initiated through the tool's user interface can
also be initiated through the message interface.

When an HP SoftBench tool or an encapsulated tool
wants to cause another tool to perform an operation, it
sends a request message. The tool requesting the service
does not know the particulars of the tool that will service
the request. It only deals in terms of an abstract tool pro-
tocol. There are several predefined tool protocols in the
HP SoftBench environment, one for each class of tool (e.g.,
DEBUG, EDIT, BUILD). Each tool protocol is composed of a
set of operations (e.g., STEP, SET-BREAKPOINT, CONTINUE).
As long as a new tool fully supports the appropriate tool
protocol, that new tool can be substituted for the original
tool, and the other tools in the environment continue to
operate with the new tool just as they did with the original
tool. With the HP Encapsulator, users can define new tool
protocols or develop new tools for existing protocols.

There are several important benefits of having a message-
based interface to all tools in the environment, but the
primary reason is for task automation. Tools can be con-
trolled by other tools instead of a person.

Other benefits of a message-based interface include pro-
grammatic application testing (see "Architectural Support
for Automated Testing," page 37), computer-based training,
and on-line help (see "Integrated Help," page 57). The value
of a message-based API has been demonstrated in several
systems. Most influential in the HP SoftBench design were
the FIELD system done at Brown University,s the FSD sys-
tem done at USC-ISI,z and the HP NewWave environ-
ment.3'B

command-Class. The command class is the type of operation (e.9.,
EDIT, DEBUG),
Command-Namo. The command name is the name of the operation
within the command class (e.9., SAVE-F|LE, srEp, srop), The
combination of the command class with the command name
def ines a unique operation, (e.9., EDTTSAVE-F|LE or DEBUG STEP),
Context. The context is the triple (host, base directory, file). This
indicates the location of the data being operated on. The context
is used to dist inguish belween mult iple instances of the same
tool. For example, if the user is working on two projects at once
and has two debuggers running, the context ensures that the
right messages get sent to the r ight debugger.
Arguments. Each message may have optronal, variableJormat
argument l ists, which provide addit ional information regarding
the operation-for example, the name of a function or variable.
In the HP SoftBench product, complex data is passed by refer-
ence rather than by value. For example, i f the message is a
notification from the static analysis tool with the response to a
request for a complex query, the arguments contain a pointer to
a f i le containino the data.

Event Triggers
An important extension to the message-based API model

is that all HP SoftBench tools and all external tools that
have been integrated using the HP Encapsulator announce
the action they just took after each operation they perform.
This notification message is sent whether the operation
was initiated from the user interface or from the message
interface. The notification message also indicates whether
the operation was successful (see "Broadcast Message
Server Message Structure," above).

These notifications are the key to a powerful HP
SoftBench concept known as event triggers. A trigger is a
set of operations to be executed when an event occurs
somewhere in the user's software engineering environ-
ment. As a simple example, when an HP SoftBench tool
modifies a file, it announces this fact, so that other tools
that are operating on the file can be updated appropriately.
The notion of a tool announcing its operations comes from
the research on FIELD at Brown University.s

In the HP SoftBench environment, certain triggers are
predefined in the tools. More important, users can define
their own triggers with the HP Encapsulator, keying off
any notification in the user's environment. For example,
the user might define an event trigger that automatically
notifies the team whenever a successful build occurs. or
metrics might be collected whenever a file is checked into
version control.

Broadcast Communication
The HP SoftBench environment uses a broadcast model

of tool communication provided by the facility known as
the broodcost messoge server (BMS). The BMS is the dis-
patcher of messages between the various tools in the user's

JUNE 1 990 HEWLETT-pAoKARo lounter 39

Distributed Execution, Data, and Display

The distr ibuted computing support capabil i t ies of the HP
SoftBench environment can support a variety of machine config-
urations. Fig. 1 shows an example of a configuration. Assume
that an engineer has a small , inexpensive X display machine
(possibly a diskless HP 9000 Model 340 workstation or an X
terminal). Also assume that the HP SoftBench environment is
installed on an HP 9000 Model 370 server machine, and that the
engineer is developing software for an HP 9000 Serles 800
machine, which is used as a central data storage facility. A typical
HP SoftBench configuration will probably have one or two
machines instead of the three in this example. However, i t is
possible to come up with conf igurations that use more machines.

In this example, Jirst the engineer would start the HP SoftBench
environment on the Model 370 HP SoftBench server, with the
DTSPLAY environment variable pointing to the X display server.
One of the features of the HP SoftBench distributed execution
facility is that the current environment of a process is always
maintained when executing a chi ld process, even over a network
connection. Thus, i f any X cl ients are spawned, the chi ld X cl ient
wil l point to the correct display machine. Next, the engineer starts
the HP SoftBench build tool, with the context set to the Series
800 machine. Final ly, the engineer selects the bui ld tool 's bui ld
button. The HP SoftBench subprocess control (SPC) faci l i ty wi l l
now do two things. l t wi l l set the working directory to match the
context host and directory, and it will spawn a make process on
the Series 800 machine in this working directory. Alternatively,
the build tool can be configured to spawn the make process on
a dif ferent, possibly less loaded machine, but the working direc-
tory will still point to the same context directory.

What i f a bug is discovered in this program? The engineer can
start the program debugger on the Model 370 HP SoftBench
server. This can be accomplished using the Actions:Debug menu
pick of the development manager or the Tool:Start... menu pick
of the tool manager, or by starting the HP SoftBench program
debugger manually. The debugger again uses the distr ibuted
executiqn feature of the SPC to start an xdb process on the Series
800 machine, debugging the object f i les created by the bui ld
tool. Finally, the engineer can start the static analyzer to browse
through the stat ic analysis information generated by the bui ld
tool. The stat ic analyzer is running on the Model 370 HP
SoftBench server and accessing data on the Series 800 data
server.

+ X Oisplay Connection
-+ Data Connection
. . . . > SPC (Subprocess Control) Connect ion

Fig. 1. An example of an HP SoftBench distilbuted develop-

ment environment.

Gerald P. Duggan
Software Development Engineer

Software Engineering Systems Division

software engineering environment. Like a communications
satellite, the BMS receives messages from tools in the en-

vironment and rebroadcasts these messages to all tools that
have expressed an interest in each type of signal.

When an HP SoftBench tool or a tool integrated using

the HP Encapsulator starts up, it establishes a connection
to the BMS and announces its command class (that is, the

tool protocol it supports) and the operations it will service
(its message-based API). It also tells the BMS what events

it would like to be notified about if and when they happen

elsewhere in the environment (that is, the messages for

which it wants to define event triggersJ. See "Broadcast

Message Server Message Structure," page 39.
There are two types of messages in the HP SoftBench

environment: notificotions and requests. A notification is

an announcement of an action, and a request is a tool asking
the environment to perform an action.

40 HEWLEn-PACKARD JOURNAL JUNE 1990

When a notification message is received by the BMS, it
forwards the message to the tools that have informed the
BMS that they would like to receive those messages. For
example, in Fig. 2, the program builder tool has sent a
notification that a DIRECTORY-BUILD was successfully com-
pleted. The BMS forwards the message to tools that have

Fig,2. HP SoftBench tools communicate through the broad-
cast message server, Tools receive only messages lhey want
to receive.

Schemes: Interface Consistencv

In the HP SoftBench environment, we wanted to dist inguish
regions according to the fol lowing functions:
I Unchanging system information' e.9., prompt str ings
'" Changing system information: e.9., the function being exe-

cuted in the debugger
* User area: anywhere the user can enter text
' Read-only user area: a view of a read-only f i le
' Selectable regions. buttons.

The X1 1 window toolkit al lows a choice ol fonts, colors, and
shadows for each region of an application main window. With
the OSF/Motif appearance, regions can also be dist inguished
by 3D appearance. Areas can appear to be raised, lowered, or
f lat on the window panel. These col lect ions of visual attr ibutes
organized by function are cal led schemes.

Information presented by the system, such as the current l ine
number in the HP SoftBench program debugger, appears f lat in
the window. The label for system information uses a bolder font
than the value. In the main window for a tool, there is a single
background color {or al l system areas.

Areas where the user can enter information appear recessed
in the window and have a dif lerent background color from system
areas. Sometimes the user is prevented from entering information
in a user area-for example, when a f i le being viewed has read-
only protection. In these read-only user areas the background
color is the same as the system areas.

Regions where the user can select using the mouse (buttons,
for instance) use a large bold font and appear raised.

Windows that pop up (both menus and dialog boxes) use
colors that associate them with the pul l-down menu bars.

Much of the human interface is implemented in HP SoftBench
library routines shared by al l appl icat ions. These high-level cal ls
create widgets o{ known names. As a result, human interface
consistency is ensured and the number of resources needed to
specify a scheme is minimized. Widget classes are used where

expressed an interest in this event. In this case, the develop-
ment manager will use the message to trigger a directory
update and the static analyzer will use it to trigger a
reanalysis of its program data base.

Often, no tools have expressed interest in a given mes-
sage. When this is the case, the message is discarded. Tools
get only messages they have requested. This serves to
simplify a tool's message processing and substantially re-
duce the message traffic on the network.*

Tool Execution
When a request message is received by the BMS, the HP

SoftBench environment first checks to determine whether
an already running tool has indicated through its API that
it will service this type of request. If there is such a tool
running, the HP SoftBench environment forwards the re-
quest message to that tool.*" If there is no such tool run-
ning, the HP SoftBench environment checks a user-cus-

- Strictly speaking, "broadcast" message seryer is somewhat of a misnomer since only
tools that have explicit ly requested certain messages are loearded those messages. The
term "multicast' would be more accurate.

"Th isexp lanat ronhasbeensomewhats imp l l l i ed .An mpor tan t fac to r inmessagedspatch-
ng rs the contexl of the message. All messages conta n a trlple that indicates the ocatlon
of the data the message is refetring to. The HP SottBench env ronment uses this to dls
t nouish between multiole instances of tools.

possible to dist inguish scheme components, but where a single
widget class is used {or more than one purpose, widget names
or widget class hierarchies must be used.

Choosing a Scheme
Schemes for monochrome and color are provided in three

different font sizes. l f the user does not specify a part icular
scheme by sett ing the Scheme resource, a scheme wil l be chosen
based on screen resolut ion, visual class, and screen depth. Font
size is chosen based on the screen resolut ion. A color scheme
wil l be used only i f the screen has at least four color planes and
the desired colors are avai lable.

lmplementation
Scheme f i les are ordinary Xl1 resource f i les. X1 1 resources

are used to configure tools. Each application constructs a re-
source data base for i tself . Some resources apply to al l instanti-
at ions of a tool-for example, the arrangement of windows in an
application. Others, the scheme resources, may depend on the
part icular display being used. Users can override resource val-
ues .

HP SoftBench tools have resource f i les not used by other X.l 1
applications. This was done to permit the sharing of resources
between applications. Resources for code implemented in
shared l ibraries are stored in the Libxe resource f i le. Scheme
resources are placed in their own f i le. This approach al lows easy
configuration with al l font and color specif icat ions isolated and
snareo.

John R. Diamant
Colin Gerety

Software Development Engineers
Software Engineering Systems Division

tomizable data base that contains the name of the appro-
priate tool to start and instructions for starting it. The HP
SoftBench environment then starts the tool and waits for
confirmation from the tool that it will indeed handle the
request. Once this confirmation is received, the HP
SoftBench environment forwards the queued request mes-
sage to the tool just started. The HP SoftBench module that
monitors the tools that are currently executing and invokes
tools when necessary is referred to as the execution mon-

ln the HP SoftBench environment, as in the HP NewWave
environment, but unlike the UNIX operating system, users
do not have to start tools explicitly. They request actions

on objects, and if a tool needs to be started, the execution
manager starts it for them correctly and automatically.

: I , i i , i , t r : , t ! " " , q . i] . :

It is a fundamental goal of the HP SoftBench environment
to support development in a distributed computing envi-
ronment. This is defined to include configurations of sev-
eral hundred computers, composed of arbitrary combina-

tions of X terminals, workstations, servers, and larger com-
puters. The goal of HP SoftBench distributed computing

JUNE 1990 HEWLETT pACKARD JOURNAL 41

Pervasive Editing in the HP SoftBench Environment

All HP SoftBench tools have common editing needs. All must
prompt the user for input, and many provide views into source
f iles. For consistency of the human interface, it is an HP SoftBench
requirement that a common set of editing commands be used
in all editable areas. The editing functionality exists in the HP
SoftBench library and is shared by all the tools. Because the
code is shared by all applications, consistency of appearance
and behavior is ensured.

The Edit Widget
All of the underlying functionality needed by the editor was

put into the edlt widget. This includes insertion and deletion of
text, cut, copy and paste, language dependent selection such
as tokens or statements, and undo history. The edit widget sup-
ports .16-bit characters and has language-sensitive editing capa-
bilities. The availability of the widget makes it inexpensive to
have this exact functionality in numerous places throughout an
application. In fact, this single copy of code is shared among al l
the HP SoftBench applications. An edit widget is used in al l areas
where a user can type information.

A variant of the edit widget is used to provide selection from
a list of alternatives, such as a list of filenames in the development
manager directory list, function names resulting lrom a query in
the static analyzer, or a list of mail messages in the HP SoftBench
mail subsystem.

One.Line Editables
The human interface needed to include many areas for display-

ing small user input windows that could be labeled with concise
prompts, such as for a f i lename, an execution hostname, or a
search string. These are implemented with a packaged combina-
tion of a static text widget for the prompt and an edit widget for
the user data. Called a one-l ine editable, this type of enti ty pro-
vides the application writer with a single widget to specify
geometry placement. The individual constituent widgets allow
specification of different fonts and background colors to inform
the user which areas are constant and which are modif iable.
Using such an editable gives the application al l the power pro-
vided by the editor in each input f ield, with no addit ional code.
One-l ine editables are used in dialog boxes as well as in the
application's main window.

View Space
Applications olten need one or more windows to display a

view into a possibly large piece of text, such as the contents of

a file or a set of debugger output messages. Each sucn screen
area is associated with a view space. A view space provides a
scrollable areator an edit widget, a place for a tiile, a filename,
and a collection of indicators or buttons.

The size of the view space is driven by the size of the edit
widget, which can be specified in character rows and columns
instead of pixels. The modifiability of the region is indicated by
the background color. The application can choose to hide the
indicators selectively. Buttons not prohibited by the application
automatically appear as needed.

lf several files or buffers share the same view space, an index
button appears. This allows the user to select from a list which
of the views in that space should be displayed.

Viewing Files
To insert a f i le into a view space, the application makes a cal l

such as:

DisplayFile(Viewspace, DataHost, DataDirectory, DataFile, LineNumber);

Access to a host other than the execution host is provided
transparently to the application.

A similar interface allows the application writer to add annota-
t ions to a given l ine of a f i le. These annotations are displayed
as small pictures in a window adjacent to the edit widget. These
pictures r ide with their associated l ine as the l i le is edited or
scrol led. Annotations are used, for example, to denote debugger
breakpoints or the program counter posit ion.

File Synchronization
Since several appl icat ions may be viewing the same f i le, the

file-viewing library routines provide for keeping these views syn-
chronized with the f i le system, using the broadcast message
server (BMS). When the edit widget successful ly saves a f i le, a
FILE-MODTFTED message is sent, alert ing other appl icat ions in-
terested in the f i le. By default, the other appl icat ions automatical ly
load the new fr le from disk. l f there is r isk of destroying a user's
modif icat ions, or i f the user has so requested, a prompt box
appears asking whether or not to reload the t i le.

William A- Kwinn
Software Development Engineer

Software Engineering Systems Division

support is to facilitate the use of the network and to hide
from the user any complexities the network introduces.

Remote Execution
In the HP SoftBench environment, any tool can execute

on any host in the network. * To support this remote execu-
tion, HP SoftBench includes a distributed execution mech-
anism designed to make the remote execution transparent
to the HP SoftBench tools.

To communicate with processes running on a local or
remote computer, a high-level protocol is used. When com-
municating with a remote computer, a small daemon pro-
gram known as the HP SoftBench subprocess control (SPC)
' On each computer where any HP SoftBench tool or encapsulated tool wlll execute, the
HP SoftBench product must be installed.

42 rEwrrrr,plcKARD JoURNAL JUNE 1990

daemon is used. This remote daemon is automatically in-
voked through the HP-UX inetd facility. Process control be-
tween the initiating tool and the remote process is then
conducted through the SPC daemon.

HP SoftBench tools communicate in a distributed envi-
ronment via the BMS, as described earlier. This communi-
cation mechanism is network-based so that tool communi-
cation works identically whether all tools are local or each
is on a different computer in the network.

One of the most powerful applications of distributed
execution is for special-purpose execution servers. For
example, a project of ten software developers might wish
to designate a dedicated (or otherwise lightly loaded) com-
puter on the network to be used for all program builds
(compiling and linking). With the HP SoftBench distributed

(continued on page 44)

Native Language Support

Localizability has been one of the goals for the HP SoftBench
product from the beginning. To this end, al l of the code has been
writ ten to handle both B-bit and 16-bit data (see Fig. 1). The only
l imitat ions are imposed by some of the underlying HP-UX tools,
such as rcs and mkmf. The HP SoftBench edit widget can receive
16-bit input from the native language l/O lacilities (see below).
The ionts designed for the HP SoftBench environment include
all of the HP Roman8 characters.

The HP SoftBench environment uses the configurability of X1 l
applications to full advantage. Instead oi putting localizable
strings in message catalogs, we have opted to put them in X1 .1

resources. Localizers can redefine the values of X1 1 resources
to translate HP SoftBench pull-down menus, button labels,
prompts, and error messages. Because we have made maximal
use of widgets that autoscale in size, there should be few places
where localizers need to adjust screen layout parameters, By
sett ing a single resource value, local izers can change edit ing
commands from chorded combinations with the Extend char key
to sequence combinations with the Esc key. They can also use
X11 resources to specify appropriate font schemes, and even
to refer to alternate icon bit maps.

In response to a request {rom the HP SoftBench developers,
the X.l 1 team added support for an environment variable that
causes the system to search for appl icat ion defaults in a specif ied
directory, rather than in /usr/lib/X11/app-defaults. This allows the un-
local ized version and one or more local ized versions of the HP
SoftBench environment to reside on the same system.

By setting a few environment variables and adding at most
several lines to .xdefaults, the user can use a localized HP
SoftBench environment with virtually no speed penalty

Edlt Wldget
The HP SoftBench edit widget is the core of all 8-bit and 16-bit

data handling in HP SoftBench applications. The user's textual
data, either in the form of files loaded from the file system or text
entered into editable fields, is stored and presented to the user
through the edit widget. This use of the edit widget makes it
much easier for each tool to provide data integrity.

Native language l/O support is part oJ the consistent editing
faci l i t ies described in "Pervasive Edit ing in the HP SoftBench
Environment" on page 42. Wherever the user can enter text within
HP SoftBench tools, native language l/O is available. Because
it is provided by the edit widget, i t is transparent to individual
tool implementors.

The edit widget is bui l t on the R2 version of the Xtlntr insics.
At application start-up, it determines from the HP-UX environment
variable. LANG. whether i t needs to handle B-bit or '16-bit data
and makes appropriately configured buffer structures. lt also
checks whether an Asian language keyboard is attached to the
X server. lf the keyboard is Asian or if an environment variable,
KBD-LANG, is set to an Asian language, the widget will activate
a native language l/O server process. In the final product version
buil t on the HP-UX 7.0 release, the HPX extension l ibrary provides
much of the support necessary to handle all of HP's supported
keyboards correctly.

The design of the edit widget is based on object-oriented
principles. Since a supported objecforiented language was not
available on the HP-UX operating system at the start of develop-
ment, we used a set of C macros to code in a simple but effective
objecforiented style. The B-bit and 16-bit capabil i t ies are pro-
vided by specialized subclasses of base objects, which provide

Fig. 1. Ihe HP SoftBench envi-
ronment with Japanese localiza-
tions.

7z1t ffi* t\'"tt *ffi.t t'otJ
f t B e n c h - A g 4 l L : r i r f -

7z'f I : hpf cr j g: /usr/sof r\",72 *ffrE) 'D1, l-J, \n"

t ' f 1^ tv -aZf f) *
f o r (i = 0 ; i < a r g c ; i + +)
{

/ * E L f . i t 7 7 v - A
' i f (s t r ch r (a rgv I i] , ' : '

{
d isp lagNare = argv l i l
f o r (j = i ; i (a r s c

arsv t i l = a rgv l i *
a rgc- - ;
o reaK;

t r f t z , A v - A * f i t t l
)

rltlr'tr i t z/v-
((d isp lag = X0pen0 isp las

fp l in t f (s tder r , "LO
e x i t (0) ;

)
I ' X D e f a u l t s A ? - , t
ProcessXDef au l ts (a rsv [0]) ;

t * 1 ! / : t l i l , t 7 0
Process0omndLine (ar9c,

Hl]!*(l,l ')
l i + \ J L _ /

/snapshot. c c [FEl

I r nc
$ i n c
l i n c

/ I t t t t t t * l t * t t l I * l t * * * t t ! * i t l t t t t 1 l l t t t l t * * * l t t i t t I l l x * : r l l r * t t t t /

I t l l Y t t l

t ' ^ , \ - ra -a \ha ^ l v / ! = | *wa ta / t L . ' /
/ ' *9, i ,r ^av-a&{t*t l \ t" ' /
/ 1 t * t t t * r r * r : l r r : t r I r r 1 l r I t r r r t t t l t l l * t t * l t ! t t t t t t t t * i : * r : t t r t l r t /

m i n (a r g c , a r g v)
r n t a r g c ;
c h a r r r a r g v ;(
i n t i , i ;

I t f 1 7Jv-o8{t * argv i .BRDHi i * /
f o r (i = 0 ; i (a rgc ; i ++)
{

/r ELr' i , t ^/v-aAfr i i { ' i8t1'cr.hrJ, ?aeff i * WD
i f (s t r c h r (a r g v l i l , ' : ') ! = N U L L)
{

d isp lagNare = arsv l i l ;
f o r (j = i ; j < a r s c - 1 ; j + +)

a r g v l j l = a r g v l j + 1 J ;

T 7 4 J

,'t 't)'(11)

r**

JUNE 1990 HEWLETT PACKARD JOURNAL 43

most of the drawing and data storage functionality. At creation
time the edit widget decides whether to create B-bit or 16-bit
pseudo-objects. This allowed significant code sharing. The lan-
guage-sensitive actions of the HP SoftBench environment were
added in a similar manner. In this case one of the primary benefits
was to allow two different engineers to work on tightly coupled
code with minimal interference.

Warren J. Greving
Kathryn Y. Kwinn

Software Development Engineers
Software Engineering Systems Division

(continued from page 42)

execution capability, the team's environment can be cus-
tomized to execute every user's builds on the dedicated
compile server. This allows the team members to maintain
full performance on their personal workstations while their
compiles are performed on the server, which is not bur-
dened with other tasks that might slow down the compila-
tions. The same notion can be applied to any of the tools.

Remote Data
In the HP SoftBench environment, data can reside on

any host in the network. Regardless of where a tool is
running, it can access the data. The user provides an HP
SoftBench file specification, which may contain an op-
tional host field (e.g., machinel:/usr/src/project1fiite1.c). If a re-
mote host is specified, the distributed data facilities are
automatically employed to establish the path to the remote
file.

With large teams, it is often easier to manage and ad-
minister data centrally than to have the data duplicated on
each workstation in the network. For example, configura-
tion management, tape backup and archiving, and project
management are typically easier when the project files are
centralized. This was and remains one of the benefits of
timesharing systems.

The most common application of the remote data feature
is the use of a data server. For projects that prefer or require
dedicated computing power for each engineer, yet wish to
have a common location for project data, the HP SoftBench
distributed data capability facilitates this. Prolect members
can run their tools locally but designate and use a common
computer and file system location for project files (e.g.,
f ileserver:/usr/src/projectl).

Remote Display
HP SoftBench tools are built on the X Window System

Version 11, which is a network-transparent window sys-
tem. One of the benefits of the X Window System is that
X programs can run on one system and display visually
on another. In fact, to run the HP SoftBench environment.
the only process that must actually be observable to the
user is the X display server, which requires a bit-mapped
display and adequate RAM.

The extreme example of this is the X terminal products
that are now appearing. These act as smart terminals that
run the X display server and connect to the network. The
HP SoftBench tools the user runs actually execute on other
computers in the network. Moreover, the computers that

44 HEWtErr-pAcKARD JoURNAL JUNE 1990

actually run the HP SoftBench tools do not need to be
running X11. They must simply support the X11 client
library interface and be connected to the network.

The HP SoftBench remote execution, data, and display
capabilities described above enable diverse configurations
of workstations, servers, and larger computers to be em-
ployed, based on the needs of the user's team, to increase
software development throughput and decrease per-seat
cost (see "Distributed Data, Execution, and Display," page
40).

IIser Interf"ace Management

To provide a consistent appearance and behavior among
the many HP SoftBench tools, and to facilitate the use oi
the OSF/]vlotif user interface style, the HP SoftBench inte-
gration services contain user interface management soft-
ware. This software provides support for schemes (see
"Schemes: Interface Consistency," page 41), pervasive code
editing and viewing (see "Pervasive Editing in the HP
SoftBench Environment," page 42), native languages (see
"Native Language Support," page 43), and interactive help
(see "Integrated Help," page 57).

User Model
The HP SoftBench tools have been designed so that they

can support many different styles of work. A programmer
doing rapid prototyping may use the same set of HP
SoftBench tools as one doing maintenance, but they may
be used quite differently, since the task is different.

The programmer doing rapid prototyping may keep a
"home base" in the program editor, while one doing
maintenance may have a home base in the static analyzer.
However, both have easy, integrated access to the other HP
SoftBench functions such as file version management and
program builds.

In the HP SoftBench system model, each tool provides
the actions that are appropriate based on the type of data
managed by the tool. For example, in the program editor,
source files are viewed and manipulated. However, the
programmer can also check in and out the currently edited
file, cause the file to be compiled, and ask static analysis
queries, such as where a given function is defined. The
static analyzer provides cross-reference and code browsing
information, yet the programmer can edit the files being
viewed, check them in and out of version control, and
cause the files to be rebuilt. This remote access to other
tools' functionality is provided by the HP SoftBench tool
communication architecture. It lets the programmer con-
centrate on the task at hand, while the tools cooperate
among themselves to perform requested operations.

Human Interface
The HP SoftBench environment provides an object-ac-

tion user interface model. The user first selects the object
that will be operated on, and then selects one or more
actions to be performed on that object. The environment
works to provide a task-oriented, rather than a tool-oriented
view of the environment to the user. The HP SoftBench
user interface style was significantly influenced by the HP
NewWave user interface work.e

Mechanisms for Efficient Deliverv

The HP SoftBench environment is comoosed of several com-
municating processes, al l running under the HP-UX operating
system and the X Window System Version 1 1 . Each HP SoftBench
tool is built on the X Version 11 C library interface, the X toolkit,
the HP widgets, and the HP SoftBench common code library.
Most X toolkit applications are very large because of the sizes
of the required libraries. Each of the dozen HP SoftBench pro-
cesses would be well over a megabyte in size if it were linked
in the standard fashion, having its own private copy of all the
l ibrary code.

To deliver the HP SoftBench environment effectively, we de-
veloped a delivery technology that significantly reduces the size
of the tools and improves the performance. To the user, these
Jacilities are completely transparent. The user runs HP SoftBench
tools just like any HP-UX program or shell script. These facilities
are not available to the end user. They are used only to ensure
effective delivery of the HP SoftBench tools.

The large executable size is a problem, but not only because
of the disk storage space required. With several of these pro-
grams al l running at once (as they typical ly are in the HP
SoftBench environment), the physical RAM in the computer can
be exceeded by a large factor. The virtual memory system allows
the system to continue to run, but per{ormance degrades as
more pages of memory are moved to the swap device.

The solution was to have just one copy of the library code,
rather than many. The common library for all the HP SoftBench
applications is about one megabyte in size. Al l of the SoftBench
tools (except the HP Encapsulator) are less than 200K bytes in
size when str ipped of their private copies of the l ibrary.

lmplementation
The idea of shared l ibraries is not new. Many UNIX implemen-

tations support them. However, no shared library facility existed
on the HP-UX operating system at the t ime we needed i t for our
product, so we implemented our own. There were some technical
choices to be made:
I Where should the shared code physically reside so that it can

be accessed simultaneously by all of the tool processes?
! How can the individual tools be l inked to the shared code so

that the addresses of entry points and globals are properly
resolved?

r How can the various tools be invoked such that the attachment
to the shared l ibrary is transparent to the user?

Storing the Code
Our f irst approach was to use shared memory segments. These

are regions of memory that can be created by one process and
then accessed by many others. We loaded the library code into
one or more of these segments. Any tool could then attach to
these segments and execute code direct ly out of them. This was

The HP SoftBench environment follows the OSF/\4otif
appearance and behavior. This interface technology is
largely mouse- and menu-driven, with human-computer
interaction occurring primarily through dialog boxes (see
Fig. 3).

Several benefits are provided by the OSF,Motif technol-
ogy:

A rich set of primitives on which to build sophisticated
user interfaces.

conceptually very simple. We could put each separate library
(libc.a, libxl1.a, libxt.a, etc.) into its own segment, and each appli-
cation only had to attach to as many segments as it needed.
However, there were problems with this approach. First of all, it
required an explicit step in the initialization of the environment
to create these segments and load them. lt also required some
user action to deallocate them when taking down the environ-
ment. Also, on HP PA-RISC computers, there was a performance
degradation if an application needed more than two of these
segments.

The solution was to put allthe library code into a demand-load-
able executable program. The HP-UX system automatically
shares the code of such an executable if it is being executed
simultaneously by mult iple processes.

Linking the Code
At first we tried to link each of the tools statically to the library

code. The HP-UX l inker td has a special option to do this. This
approach would have been the most straightforward way of de-
livering the product to users, but we found that it was too inf lexible.
Once the tools had been statically linked to a particular library,
any changes to the l ibrary required rel inking al l the tools. We
needed rapid prototyping: as we changed or added features to
the library, we wanted to test the changes quickly without having
to rebuild everything.

The solut ion was to delay l inking the tools unti l run t ime. A
dynamic loader resolves external symbols and relocates the code
when the application is loaded. This l ink step is very fast (1 to 2
seconds) because i t al l happens in memory. The tools themselves
reside on disk as standard unl inked .o f i les.

Invoking the Tools
As a result of the decisions just described, al l HP SoftBench

tools are invoked by running a single, large, demand-loadable
program that contains a dynamic loader and all of the common
library code for the product. This program is called runprog until
it becomes part of the HP SoftBench product. lt is possible to
run any of the HP SoftBench tools by executing runprog explicitly,
but there is a quick tr ick that hides what's going on. We use the
HP-UX In command to give runprog several aliases. There is still
only one runprog, but each of the HP SoftBench tools is actually
just another name for it. Runprog figures out which tool to run by
looking at its own invocation name, argv[o], then appends .o to
that name and invokes the dynamic linker, Now HP SoftBench
tools can be executed transparently as in any other HP-UX pro-
^ 1 2 m ^ r c h o l l c n r i n l

Sam Sands
Software Development Engineer

Software Engineering Systems Division

r Keyboard traversal for users who prefer to perform some
or all operations from the keyboard rather than with a
pointing device.

I Native-language input and output for accepting and dis-
playing languages requiring 8-bit and 16-bit character
sets.

r User-definable keyboard accelerators for common menu
actions.

r Consistency with PC-based applications to facilitate in-

JUNE 1990 HEWLETT-pAcKARD JoURNAL 45

Application of a Reliability Model to the HP SoftBench Environment

The HP SoftBench team decided to incorporate a statistical
rel iabi l i ty model into the data gathering process during the sys-
tem test phase to help us better understand the current qual i ty
level of the code and predrct how long it might take to attain a
given quali ty level. The model is based on the work of Kohoutek,l
with addit ional results from Musa, Okumoto, and Goel.2'3 Similar
models have been used in other HP Divisions.a56 We tearneo
of i t from Doug Howell .T

The basic idea is to f i t a logarithmic Poisson execution t ime
model to the plot of delects found versus t ime. At t ime t (in hours),
the number of defects found, u(t), is given by.

u(t) : d (1 -e ^vd)

where d is a scale parameter and I is-the defect f inding rate.
Each week, when we had a new data point on the graph of

defects found versus test hours, we used nonlinear least squares
iteration to find the 0 and tr that produced a best fit of the u(t)
curve to our data. From the very beginning, the { i t of the curve
to our data points was remarkable.

The scale parameter d is the l imit of the function u(t) as t
approaches inf inity-that is, i t is the number of defects the model
predicts are in the product. We found the stabi l i ty of d over t ime
to be an interesting subject; we will say more about this below.

The first derivatlve ol u(t) is the rate at which defects are being
found. The reciprocal of the f inding rate is the instantaneous
mean t ime between defects (MTBD) at t ime t:

MTBD : 1/u'(t) : (1/L)ervo

This equation was extremely useful, since i t al lowed us each
week to predict when a given MTBD would be achieved We
solved this equation for t for various values of MTBD, given the
current values of 0 and tr. We then converted t from hours into
calendar t ime by dividing by the average number of test hours
we were logging per week.

This gave us a weekly predict ion of the calendar date when
we would achieve an instantaneous MTBD equal to our goal. We
noticed that 0 (hence the predict ion) was fair ly unstable at f i rst.
Then we f i t ted u(t) to dif ferent data. Instead of computing d based

teroperability across computing platforms.

Conclusion
We have described the various mechanisms provided by

the HP SoftBench tool integration architecture for tool com-
munication, distributed data, execution, and display, and
user interface management. The communication facilities
are exploited by the HP SoftBench software development
tools to collaborate in presenting a task-oriented environ-
ment to the programmer. The distributed execution, data
and display services are used by the tools to allow the user
to make effective use of the computational, file storage,
and presentation capabilities available on the network.
This can improve performance, reduce per-seat worksta-
tion cost, and facilitate development for large software

teams in a distributed environment. The user interface
management facilities allow the tools to present a consis-

46 HewlErr-pecrnnD JoURNAL JUNE 1990

on the plot of raw unweighted defects versus test hours, we used
what we call filtered weighted defects. Duplicate reports and
enhancement requests were removed from the count, and de-
fects were weighted according to the severity assigned to them
by the proiect team (on a scale from 0 to 1).

This of course gave us an MTBD that meant something different
than before. lt was now the instantaneous mean time between
virtual defectsof weight 1 instead of thetime belween anydefects
found, regardless of severity We decided that this new MTBD
number actual ly meanl more, given that the SoftBench product
is user-interface-intensive and many people were submitt ing low-
weight defects that were styl ist ic, personal preference issues.

When we switched to computing 0 based on the f i l tered weight-
ed defect plot, it became quite stable. Several months ahead,
we predicted that we would reach our MTBD goal on a part icular
date. The actual MTBD on that date was 95.7olo of the goal, and
we reached the goal and did our f inal bui ld f ive days later.

We feel that the use of this simple model was very successful
in achieving the objectives of understanding where we were and
providing a rat ional (as opposed to emotional or schedule im-
posed) predict ion of when we would be f inished.

Relerences
1 H. Kohoutek, 'A Practical Approach to Software Reliabil i ly l\y'anagement." Proceed

ings of the 29th EOQC Conterence on Quality and Development,1985. pp.21 1'22O.

2. JD. Musa and K Okumoto, "A Logarithmic Poisson Executron Tme Mode for

Sotlware Rel abil i lv Measurement," IEEE Trcnsactions on Rellabil ity. Vol R-33 1984,

oo 230-381
3 A.L. Goel and K. Okumoto, 'Time Dependent Etror Detect on Rate N.4odel ior Soft

ware Rel abil ity and Other Pertormance l ' /easures," IEEE Transactions an Reliabil ity.

Vol. R-28, 1979, PP 206-211
4. H.D Drake and D.E Woltlng, ' Reliabllty Theory Applled to Software Test ng

Hewlett Packard Jaurnal, Vol 38, no. 4, April '1987, pp. 35 39

5. G.A Kruger, ' Project l '4anagement Using Soltware Reliabil ity GroMh Models, Hew

Iett-Packard Joumal, Vol 39, no 3, June 1988, pp 30-35.
6. G A. Kruger, "Validation and Further Applicat on of Software Rel abil ity GroMh
t\,lodels," Hewietf-Packard Jaurnal, Vol.40, no.2, Aprll 1989, pp.1579

7 D Howell, A S mple f,,1ethod ior Predrctrng the Durat on ot Soltwafe QA, lntef nal

Memo.

Tim Tillson
Prolect Manager

Software Engineering Systems Division

tent, localizable, customizable environment that is easy to

learn and use.
The HP Encapsulator provides these integration services

to existing nonSoftBench tools, without requiring access

to the tools' source code.

Acknowledgments
The HP SoftBench product began as a research project

in the Software Technology Laboratory of HP Laboratories
in Palo Alto, California, under the internal name Ivo. The

decision was made to build a product based on this research
at the Software Engineering Systems Division in Fort Col-
lins, Colorado. The HP SoftBench product involved a great

many people in R&D, marketing, and the field. Special

thanks to HP SoftBench product marketing engineer Becky

Hennig, our human factors engineer Greg Foltz, the HP

SoftBench QA team led by Don Watt, Roy Williams, and

Fi le Vers ion D i rec tory Ac t ions He lp

Contex t : hp f cnrc : /users /ca gan/Pro J ?c t Towe r

(P a r e n t) D i r c c t o r y
l ' f a k e f i l c V c r s i o n e d - B u i l d
R C S

a u d i o .

ca I lba

ca I lba

c a I l b n

I ^ ^ i ^

1 ^ ^ 1 ^

m a i n . c

n a i n . o

n a r n . q
towc r
to {e r .

[l Keep Lockedf

fl Cancet Lock!

T h c A - 3 0 0 c o n f i B u r a t i o n d e f e c t h a s
b c e n c o r r c c t c d . 5 e c D e f e c t * 3 1 8 0 - A S . -

f oK--_-lf** c*;--l

Fig. 3. An example of a dialog box prompting the user for
version information.

Kirsten Duff, the documentation team of Mary Edelmaier,
Dave Koons, and David Wolpert, and our partners at the
Corvallis Workstation Operation, the California and Col-
orado Languages Laboratories, HP Laboratories, and the
Software Engineering Systems Division in Palo AIto.

The HP SoftBench integration platform was designed
and built by Michael Baumann, lohn Diamant, Jerry Dug-
gan, Colin Gerety, Warren Greving, Bill Kwinn, Kathy
Kwinn, Sam Sands, Gerrie Shults, Tim Tillson, fack
Walicki, and Judy Walker.

References
1. R. Ison, "An Experimental Ada Programming Support Environ-
ment in the HP CASEdge Integration Framework," Proceedings o/
the Internotjonol Workshop on Environments, Chinon, France,
September 1989.
2. B. Balzer, "Living in the Next Generation Operating System,"
IEEE Sofiwore, November 79A7, pp. Z7-BS.
3. I. Fuller, "An Overview of the HP NewWave Environment,"
Hewlett-Packard /ournol, Vol.40, no. 4, August 1989, pp. 6-8.
4. G. Boudier, F. Gallo, and L Thomas, "Overview of PCTE and
PCTE+ ," ACM SIGPLAN Notices, Vol. 24, no. 2, February 1989.
5. S. Reiss, Ovewiew of the FIELD Environment, Brown Univer-
sity, Department of Computer Science, November 1987.
6. M. Cagan and A. Ishizaki, "Ivo: An Integrated CASE Environ-
ment," Proceedings of the Hewlett-Pockord Softwore Engineering
Pro ductiv ity Con/erence, 1 986.
7. M. Cagan and D. Young, "The Ivo Tool Integration Platform,"
Proceedings of the Hewlett-Pockord Europeon Software Engineer-
ing Productivity Conference, 7987.
8. G. Stearns, "Agents and the HP NewWave Application Program
Interface," Hewlett-Pockord /ournol, Vol. 40, no. 4, August 1989,
pp . 32 -37 .
9. P. Showman, "An Obiect-Based User Interface for the HP New-
Wave Environment," Hewlett-Pockord Iournol. Vol. 40. no. 4.
August 1989, pp. 9-17.

JUNE I99O FFWI FTT-PACKARD JOURNAL47

A New Generation of Software
Development Tools
The HP So/lBench environment's development manager,
program editor, program builder, slafic analyzer, program
debugger, and mail collaborate to support task-oriented
program construction, test, and maintenance.

by Colin Gerety

HE HP SOFTBENCH PRODUCT, as explained in the
article on page 36, provides an integrated software
development environment designed to facilitate

rapid interactive program construction, test, and mainte-
nance in a distributed computing environment. This article
presents examples of computer-aided software engineering
(CASE) tools that use the services of the HP SoftBench tool
integration architecture.

The HP SoftBench environment is designbd for software
development teams that have the following characteristics:
r They need strong program construction, test, and mainte-

nance supporr.
I They want to automate tasks in their development pro-

cess.
I They want a task-oriented system that is easy to learn

and use.
I They want to integrate their existing tools into their de-

velopment environment and processes.

The HP SoftBench environment is designed so that users
can focus on software development tasks rather than on
the specific tools needed to accomplish the tasks. Instead
of having to specify tools, arguments, and data for each
step required to perform a task, HP SoftBench users select
an object to operate on (for example, an executable file)
and then specify what they want to do (for example, debug).
The environment determines what tools to run, what
machine to run them on, how to start them, what arguments
are required, and where the data resides that they will
operate on. On the other hand, HP SoftBench users who
prefer the conventional tool-oriented mode of operation
can work in that mode at their option.

The HP SoftBench tools collaborate to support five
targeted software development tasks. Two of these-team
file management and team communication-are pervasive.
The other three-program construction, program testing,
and program maintenance-support specific software life
cycle phases. A set of HP SoftBench tools assists the user
with each of these five tasks. The current HP SoftBench
release supports software development in C, Fortran, and
Pascal.

Team File Management
Teams of software developers working together need

ways to manage access to and revisions of the files that
compose the software project. Team members need a stable

48 rEwren,pncxARD JoURNAL JUNE 1990

and controlled area to develop and test the project software.
They also need an easy way to retrieve changes and addi-
tions to the project files made by other team members, so
that they can test their own changes with the latest version.
Once they are satisfied that their modifications work with
the latest version, they need to submit or promote their
modifications or additions into the master set of project
files. The HP SoftBench development manager provides
these services (see box, page 49).

The notions of reserving, locking, or checking out a file
and then replacing or checking in the modified file are
central to all development, test, and maintenance activities.
Therefore, all HP SoftBench tools that allow modification
of project source files communicate directly with the de-
velopment manager to retrieve the current file from the
version management system or to return it.

For example, if you are a developer who wants to modify
a file, you request access to the file through the develop-
ment manager. If another developer is already in the pro-
cess of modifying that file, the development manager de-
nies the request and tells you which team member is al-
ready working on the file. In this case, you can either ask
the development manager to create a branch, which will
need to be merged with other changes later, or you can
contact the named team member, either directly or through
HP SoftBench mail, to negotiate access to the file.

In addition to this team support, standard versioning
operations are provided, such as storing change informa-
tion for files so that previous revisions can be retrieved.
Also included is the ability to tag specific file versions
with symbolic names, such as Release 1.0, or with specific
states, such as Experimental. Sets of files that make up particu-
lar configurations of the project can be stored and retrieved
on demand. You may want to retrieve, for example, all the
files that make up Release 2.0 or all the files for a certain
HP-UX version that have been tested. You might also ask
to retrieve the project files as they were on January 9.

Team Communication
HP SoftBench team communication support is designed

to facilitate communication among members of the project
team so that shared resources are efficiently used, develop-
ers are notified of key system events, and work and meet-
ings can be arranged and coordinated. Like team file man-
agement, team communication is a pervasive task, neces-

Development Manager

The HP SoftBench development manager manages the ver-
sions of files on which the other tools operate. Fig. 1 shows the
development manager user interface. The user can check files
in and out, examine change histories, and compare revisions.

In the development model supported by the development man-
ager, each person has a private, local work area, which is as-
sociated with a team or master work area. The development
manager presents a view of the files in the user's work area,
along with the state of each file (file type, whether it is under
version control, whether it is locked or writable).

Fag. 1. Development manager user intertace.

The version management Junctions provided by the develop-
ment manager can be accessed directly through the develop-
ment manager user interface or indirectly from the other tools
via the development manager's message interface. For example,
al l HP SoftBench tools that provide the abi l i ty to edit source f i les
(e.9,, stat ic analyzer, program builder, program editor) al low the
user to check files in or out from version control. The tools do
this by communicating with the development manager to perform
the requested services. Thus the development manager's version
control is pervasive throughout the environment.

The development manager also serves as an application
launcher. Actions are presented based on the file type. For exam-
ple, the user can run, rebui ld, or debug an executable f i le and
edit, compile, and show lunctions of a C source f i le. Some actions
are serviced direct ly by the development manager, while others
are forwarded via the broadcast message server to other HP
SoftBench tools or user encaosulat ions.

Anthony P. Walker
Software Development Engineer

Software Engineering Systems Division

":":-

o..o, I'-l Ell Lock?

s."t.fl

f---ox lfT*"'
--l

(P a r e n t)

U a k c f i I c

q a l l b a c k s . c

c a l l b a c k s . o

c a l l b a c k s . q

l o g i c , c

l o t i c . o

l o g i c . q S t a t i c A n a l y s i s

m i n . o O b j c c t
Da j ,n .q S t r t l c Anr lys is
towl r Exccutab le
t o e c r . h Y o r s i o n e d - I n c L u d c

sary in all phases of software development.
The HP SoftBench product includes an electronic mail

facility, HP SoftBench mail (see Fig. 1). Besides the stan-
dard electronic mail capabilities of viewing, replying to,
and filing messages from others and composing and for-
warding messages to others, HP SoftBench mail is designed
to link into the rest of the software development environ-
ment. As an example of such a link, HP SoftBench mail
can be instructed to watch for the completion of a system
build and send out an announcement to members of the
team if the build fails. If the build is successful. HP
SoftBench mail can announce the success, letting the team
know that a new release of the software is available (see
Fig. 2).

More information on the HP SoftBench mail tool can be
found in the article on page 59.

Program Construction
Program construction is the transformation of a design

into an executable program. The HP SoftBench environ-
ment supports either writing new source code or assem-
bling software from existing components, or a combination
of the two.

Large projects often contain one or more common code
libraries, designed to be reused throughout the application.
Software reuse of this sort has been shown to be a major
factor in improving both software quality and productivity.
The HP SoftBench environment facilitates software reuse
by addressing one of the common obstacles to reuse: locat-
ing appropriate functions and procedures. The HP
SoftBench static analyzer (see box, page 54) assists in this
task by making it easy to search the project libraries, looking
at parameters, return values, and function definitions.

Programs are created, modified, or synthesized from

existing pieces in a program editor. The HP SoftBench pro-
gram editor (see box, page 51) assists with this task, and
provides quick access to the other program construction

tools. For example, the user can select a function name in

a program and ask the HP SoftBench environment to show

the definition of the function or other references to the

function within the application. The user can also check

the syntax of the program file under construction. The pro-

gram editor is targeted at programmers who are new to the

HP-UX operating system or who have worked in PC envi-

ronments and want a mouse- and menu-based editor. If the

user already has a favorite UNIX program editor, such as

emacs or vi, the HP SoftBench environment allows the use

of that editor instead.
Once the program source files have been created, the HP

SoftBench system analyzes module dependencies and con-

structs a recipe, or mokefile, for building executable pro-

grams or libraries. The HP SoftBench system then builds

the program, compiling and linking only modules that are

out of date. If compile or link errors are encountered, the

user can correct them interactively. The HP SoftBench pro-
gram builder fsee box, page 52) assists with this task.

The result of the program editor, program builder, and

static analyzer working together is a rapid edit-compile
cycle allowing quick exploration of alternative implemen-
tations or construction of new functionality.

(text contrnued on page 54)

JUNE 1 990 HEWLETT-PACKARo JouRter 49

Mai l Fo lder Message Set t ings He lp

lettersi

13/39s
1 3/ 398

, s d e . h p . c o m W e d N o v 1 1 5 : 0 2

' I
s t e v e 0 h F f o o . s d e . h p . c o n l l e d N o v I 1 5 : 0 2

2 j a m e s G h p g v d . s d e . h p . c o n [J e d N o v 1 1 5 : 0 2

E f* p.r""*-l f*u.pryffir..;f T*** p.r.t ***l T c.-p* I fSfl
g f-n.'l'

--l
T- B"pry,.Arr-

*-l
T F*.,..d- I T ffi.rd;:.l I

pf,
I

I le s sa ge- Id : <9OO21 22205. AA04 3700hpba r . sde . hp . c on)
T o : c o l i n O h p l s f . s d e . h p . c o m
S u b j e c t : R e l e a s e P a r t y

T h e r e w i l l b e a p a r t y t o c e l e b r a t e t h e s u c c e s s o l
t h e T o w e r p r o j e c t o n J a n 1 8 , 1 9 9 0 , H o p e
y o u c a n a l l b e t h e r e :

P l a c e : C u i s i n e C u i s i n e

T i n e : 8 : 0 0 p n

D a t e : J a n u a r y 1 8 , 1 9 9 0

A t t i . r e : B l a c k T i e

R S Y P R e q u e s t e d .

J a n e t

System nrailbox:

"' '*". i., 'h QActivc

l e a m

T h c t o r c r p r o J c c t h a s j u s t b e e n s u c c e s s f u l l y
b u i l t . Y o u c a n u p d a t e f r o n y o u r D c v e l o F m e n t
l tana gc r .

T h c t o v . r p r o J o c t b u i l d h a s f a i l c d . T h o c r r o r
l o B 1 s . t t n c h . d . P I e a s c c o r r e c t A S A P .

1 c l a i r e - p h
2 cagan0hpf

T o r c a t a n G h p f c j

. S u b j e c t : R c l A n o

'Hi
t ' larty,

Y e s t h e o t h c r m
. n d g a v c t h c . d d

J a n e t I
INRIA -

Routc d

Fig. 1. HP SoftBench mail user
interface.

50 Hewlrn,pecxARD JoURNAL JUNE r99o

SoftBench - Proqram Edi tor

F i l e Ed i t Eu f f e r P rocedu re E lock lToken l He lp

File: bpf cmr c t /us e r s/ca gan/P r o j e
.D Show References

* L a n g u a g c : C
x P a c k a g e : N / A
* S t a t u s : E x p e r i m e n t a l (D o

* r (c) C o p y r i g h t 1 9 8 9 , H c w l a t t - P a c k a r d C o m p a n y , a l I r i g h t s r e s e r v e d ,

X***{**)t(*)X*t******)fiX**N<I(*X<i<*)fi*)fi*i<*************X*X****r(X**r(*X***

* i n c l u d e r r t o w e r . h "
* i n c l u d e " a u d i o . h r l

e x t e r n W i d g e t r i n g - I i s t [] ;
e x t e r n D i s p l a y x d i s p l a y ;

e x t e r n P I N p i n [] ;
e x t e r n B o o l c a n a u d i o - v a l u c 1

void fr[Ellt l lE(f rom, to, disk-nmber)
i n t f r o m , t o , d l s k - n m b e r ;

J
I

lnt new_x, new_y;
A r g w a r g s [2] ;

/ * ud j r " t p in count x /

'D Show Classi f icat ion

Program Editor

Editors are controversial. Despite considerable reluctance,
based on our conviction that there are already too many editors
for HP-UX programs, we found ourselves writing a new editor
for the HP SoftBench environment. The reouirements that forced
this decision were:
I Language sensitivity. The primary iob of the HP SoftBench

editor is program editing. To be effective, the editor should
be language sensitive. This ruled out the Te)dEdit widget in the
X toolkit.

r Ease of learning and use. We wanted an easy{o-use mouse/
menu interface consistent with the other HP SoftBench tools.

r Embedded edit capabil i t ies. The HP SoftBench tools must
prompt the user for information. These prompts may be em-
bedded in the tool window. Without a dif f icult encapsulat ion,
stand-alone editors like emacs or vi cannot be used in this way.

I Consistent interJace. lt was an HP SoftBench requirement that
editing commands be consistent in all editable areas of all
tools.

r Broadcast message support. To be a good citizen of the HP
SoftBench environment, an editor should make its functionality
avai lable through messages and make other tools (e.9., the
HP SoftBench program debugger) avai lable from the editor.
To satisiy these requirements, we created the edit widget (see

page 42). Given the edit widget, the editor is just a sophist icated
wrapper on the exist ing functional i ty.

A user can configure the system to have edit requests serviced
by another editor, but one or more o1 the goals of the system
editor wi l l be sacri f iced. l f vi is chosen, consistency and broadcast
message support are sacrificed. lf emacs is chosen, the consistent
mouse/menu human interface is sacrificed.

In the HP SoftBench program editor, each file is given its own
window and menus are used to give easy access to the editing
functionality (see Fig. 1). Messages are used to communicate
with the HP SoftBench program builder, static analyzer, and de-
velopment manager tools.

The HP SoftBench editor is designed for editing programs, as
opposed to general prose. lt has knowledge of program struc-
tures like procedures, blocks, and tokens and can use this infor-
mation to control indentation and balance delimiters.

The easy{o-use menu/mouse interface is particularly efiective
for writing code. In the HP SoftBench environment there are
mouse functions for selecting tokens, blocks, and procedures
and there are mouse functions for cut, copy, and paste opera-
tions. Because program code involves repeating similar struc-
tures, code can be written very quickly in the program editor by
copying a structure that is similar to the needed code and chang-
ing i t to the desired form.

For example, once code similar to what is needed is pasted
into place, a typical change is in the names of variables. The
edit widget replaces selected text with whatever is typed next.
To make a change in the name of a variable that occurs several
times, the first instance of the old variable name is selected by
double-clicking the left mouse button. The new name is typed,
replacing the old name. The new name is then selected and
copied into the paste buffer. Additional instances are changed
by selecting the old token and pasting the newtoken in its place.

Colin Gerety
Software Development Engineer

Software Engineering Systems Division

Program editor user inter-Fig. 1.
face.

JUNE r 990 HEWLETT,pAcKARD JoURNAL S1

Fi le Edit Buffer Makef i le Act ions Sett ings Help

c o n t e x t : h p f c n r c : / u s e r s , / c a g a t r / P r o j c c t T o w e r

op.a"., ll-------l r*s*, l:-------------l

E,,".",GF;.*l@@
h p f c m r c r , / u s c r s / c a g a n / P r o j . c t l T o w . ! / l o t i c . c

CCoPTS=-g -y; FCOPTS'-8 -y; PCOPTS--g -y

x x x E r r o r c o d c 1

S t o p .

N o n - Z e r o t t a t u s t r o n c h i l d p r o c e s s .

E U I L D - T A R G E T F d i l c d

n € v - x - p i n l t o] . l o c a t i o n - ((R r N G - W T D T I L F A C T o R * d i s k - n M b e r)
ne!-y - PANEL-HEIGHT-FACTOR - (pinI to] ,r ing-count * RING-HEIG

X t s e t A r B (w a r s s [0] , x n N x , n e w - x) ;
X t s e t A r B (s a r 8 s [1] , X m N y , n e w - y) ;
x t s e t v a l u e s (r i n 8 - r i s t l d i s k - n m b e ! - t l , r a r g s , 2) ;

i f (a u d i o - v a 1 u e - = T r u e)
beep(vorcE, PrrcH * EEIEEEI4 voLUxE, DURATIoN);

5 1..p (PAUSE-DURATION) ;,
v o i d s h u f f r e (f r o D , t o , i p a r . r n m b e r)

i n t f r o n , t o , s F a r e , n m b . r ;

{
i f (nubcr ' - 1)

n o v e - r i n g (f r o m , t o , n m b e r) ;

Program Builder

The HP SoftBench program builder is a tool that simplifies the
compile and l ink phases of the typical edivcompile/ l inudebug
loop used during software development (see Fig. 1). l t shortens
this part of the cycle by compil ing only the parts of a program
that require recompilation because of direct or indirect changes.
In addit ion, the program builder provides an error browsing fea-
ture that facilitates direct access to identified source code errors,
thereby speeding up the edit phase of this cycle.

In an effort to simplify further the task of building and maintain-
ing a software project, the program builder provides facilities for
creating and maintaining the dependency control f i les required
for intel l igent bui lds. This frees the user from having to deal with
the format and content of such files.

Rebuild Only What ls Necessary
The program builder compiles only the parts of a program that

have changed since the last bui ld. l f an include l i le common to
several source files has changed, the program builder is smart
enough to compile al l f i les that depend on (i .e., include) that f i le.
This ensures that any change wil l be correctly propagated
through the entire software project.

In real i ty, i t is not the program builder that performs these
dependency control tasks. l t is the bui ld program invoked by
the program builder that has these abi l i t ies. The program builder
provides a f r iendly and consistent user interface to this underlying
program. The UNIX automatic dependency control program make
is the default program used to provide this lunctionality. Make
does i ts job by using t ime stamps maintained by the f i le system
to delermine i f source f i les have changed since the last t ime they
were compiled. l f any f i les (or dependent f i les) have changed,
make wil l invoke the appropriate compiler to recompile only those

Fig. 1. Program builder user intetface

fi les and rel ink them.
Although the delault build program is make, almost any build

program can be substituted. The program builder does not care
what bui ld program is run. This makes i t very simple to adapt to
new bui ld technologies. The only thing that real ly needs to be
known about the bulld program is how to pass compiler flag
information through i t to the compilers. The program builder must
be able to control certain compiler behavior, including the gen-
eration of information required to debug a program, the genera-
t ion of inlormation required lor stat ic analysis, and the optimiza-
tion of code for speed. This is necessary because the program
builder message interface allows specification of parameters that
request these behaviors. For example, the static analyzer tool
will always request static information when it sends a build re-
quest to the program builder.

By default, the program builder passes compiler f lags through
well-defined environment varlables that al l HP comoilers know
to look at, effectively bypassing the build program. Therefore,
almost any bui ld program and related makefi le should be usable
without any changes to the program builder configuration or
makefi le.

For some build programs, such as the AT&T ToolChest pro-
gram nmake, which keeps track of the compile options used to
do a bui ld, this scheme is not acceptable. Nmake wil l force al l
f i les to be recompiled i f compile options change. Therefore, the
program builder can be configured to pass compile options
through the bui ld program on the command l ine using almost
any syntax that is appropriate for the bui ld program or makefi le.

Automatic Generation of Dependencies
For make to do its job, there must be a makefile that contains

Fi le Edit Buffer Makef i le Act ions Sett ings Help

C.eateProgram Maketilcr

rnOCnAU,

rraes,

LO,

rO*r-aCS,

OrnS,

r-reS,

T----m--*-] l- c.*'
-*l

* i f n d e f - S Y 5 , F I L E - I N C L U D E D / x a 1 1 o " , m u l t i p l e i n c t u s i o n x

*de f in . -SY5-FILE- INCLUDED

* i f d e f K E R I E L

. { i n c l u d e ' r . . / h , / t y p e s . h "

- * i n c l u d c
' r . . / h / f c n t 1 . h ' l

* . 1 s .

{ i n c r u d e < s y s / t y p e s . h)

t i n c l u d . < f c n t 1 . h)

l e n d i f

x D e s c r i p t o r t a b l e . n t r y ,
* O n . f o r e a c h k . r n e l o b j e c t .

52 newlerr,pncrARD JoURNAL JUNE i990

Fig.2. Creating a makefile in the program builder

a list of source files required to construct the program The

makefile must also contarn dependencv ini":*:ll:11:11 1'::

r Int. Run lint over the source iiles to check for syntax errors

I clobber. Remove all reproducible files ('o files' program files'

O"o""J
".

*nat other files) so that efficient builds can be per-

ilr["0. ior. rn"ny UNIX users' for all but the simplest set of

source iiles, makefi|es are quite magica| and Jor the^most part,

,"i"t"f f igili" Maintaining them is a nightmare' and creating them

is very difficult The program builder provides a user friendly

interface for the creatlon and maintenance o{ these files lt auto-

m a t e s t h e s e t a s k s b y u s r n g t h e H P - U X p r o g r a m m k m f (m a k e
makelile) for both creation and maintenance'

To create a makefile, tne Makelile: create Program menu selection

ir ,."J. n .i.ple fill-in{he-blanks form is then displayed in a

inJo t."" Fig. 2). All entries are optional' but the user typically

will specify items such as an executable file and any ex'tra libraries

io O" flnf.'"0 with the program After the oK button is presseo'

the program builder causes mkml to scan all ol the tlles in the

"on[*t"Oir""rory
and construct a makefile based on the oepen-

;;;;;iaprr ;enerated from its analvsis of the source files The

program builder suppons creation of makefiles for archive li-

braries as well as for Programs-'io
,pOut.

"
takefile, th6 user simply selects the Makefile: update

menu selection. The program builder will then invoke mkml to

rescan all source tlles ani update the dependency information

in the exist ing makefi le''
ftl"f"tif

".
Jan contain numerous targets ior performing a van-

ety of tasks other than ouitOing a ptogram specilying one ot

thesetarge ts in theTARGETwinoowof the theprogrambui lder
and starting a build (pressing the BUILD buton) cau-ses the action

associated with that targetl some oi the targets. provided in

i""x"iiGt g"n"rated by tih" p'ogturn builder include:

' 1r'"i. roi."t all of the 'ouit" f il"t "t9 ::t?:l l:j:"- o-:I:l

tha ta | |owstheuser tospec i fyhowmanyexpress ionsmustbe
tut"n"O to recognize a line or set of lines as an error'

Each line received by the program builder from the build pro-

""..1.
.no*n in the build outp-ut area and compared with the

current list of known regular expressions lf it,.matches one o{

in"'"*pr"..ions (or matches the last line of a multiple-line expres-

;;;;;;." preceding lines have already been matched)' the

filename and line number are stored in the list of recognized

error lines. Selectrng any of these lines will display the associated

."rr""
""0"

fine irithetite view area The error buttons (FlRsr'

*iit,
"ol"*

available to cycle through the errors in an orderly

manner. The program builder uses {ealures supplied by the HP

i"t A"."h
"dit

*iog"t (floating line marks) to ensure that error

line references remaln accuratJ as source code lines are inserted

or deleted."
fni. i""ifi,V is not limited to compiler errors A uselul exampte

of its flexibility rs a grep orowser' The program builder can oe

conf igured toac taSonebychang ing ' thebu i ldprogram(e i ther
via the menu or by a '"tou'"" specliication) to grep' specifying

-" i.1n" program builder oPTloNS window to ensure that srep

genera tes ' t ine-numbers in i tsou tpu t ,andspec i fy ingapat te rn
and a list of files to search in the oPTloNS window The regular

"rp,"*t.
t"r. recognizing srep output it..3l1:?1y-li"tent in the

default regular expressron-fiL supplied with theprogram builder'

Now, when a build is performed' all output from grep will be

;;;ilJ
", "r,ror...

Thus, selecting any of the output lines or

using the error buttons (FlRsr, rurxr' etc) will display the selected

iite uitn" indicated line number in the file view areaof the program

OuifOer toof This flexibility can be used to create a browser for

manv tools.

Bemote Builds-
th" progr"rn builder supports a simple dstributed or remote

build facil[y in addition to the standard HP SoftBench remote

"*""ut.n
and remote data faciIities (see '.Distributed Execution,

Data, and Display," page 40) This allows users to.specify any

' " "n i " " i ' thenetwork(towh ich theyhaveaccess) ' tobeuseo

",
u

"otpif"
server. While this iacility does not implement true

d is t r ibu tedbu i |ds(bu i |dswhere thevar iouscompi |esand| inks
;;;i; compleie a build request are distributed

""::Y1:
ou,

"o.prr"r.
on a network)' it does.allow ll"

'Y to asslgn

in. .otJrt" and l/O intensive task oi compiles and links to a

machine that may be better able to handle these demands Be-

cause of i ts simplici ty, the program builder does not preclude

true distributed builds. Any buii-d facility capable of such a task

can be substituted for the UNIX make program'

TheHPSof tBenchSuoprocesscont ro l (SPC) fac i | i t y isused
f o r a u t o m a t i c e x e c u t i o n o i t h e b u i | d p r o c e s s o n t h e s p e c i f i e d
r.".oi" lotputer. Be{ore the process is started' the SPC daemon

on the remote macnlne establishes a data connection to the

mach ineandd i rec toryspec i f iedby theprogrambui |der ,sdata
context. The current working directory for the build process ls

ihen changed to match that of the context host and directory'

""i
t'" Lr]ro is then performed as if it were run locally

core f i les, etc).
r clean. Remove all object ('o) files'

I iou"n. Touch (update the time stamp of) all source lrles'

f ia ott"n desirable ior more experienced users to customlze

tne
"ctions

associated with these targets or to add new targets

i"r
"Ooio"."L

irnctionality To this end ' a menu selection (Makefite:

e"oiOls avaifaOle so that the makefile can be edited in the edit

"r"i
J ,n" program builder or in a separate window'

"
in" progru." builder attempts to deal gracefully with build

requests when no '""ogn''ubl" makeJile is present lt is often

the case that a single olrectory may contain numerous simple'

r"f
"".r"i""0

prog"rams Whil; rt is currently not possible to in-

.itr", ,n" pr"Srur.i b'ild"' to build all oi the programs in the

directory without a maxerile' requests to build individual pro-

grams are handled correctlY'

Error Browsing-'A
usetut ieaiure of the program builder is the error

?'"y^t-"'t-
The program builder presents compilation errors to the user tn

"'orJ*.""0f.
list. lt is a simple matter for a prggrammer to walk

through the l ist of errors' f ix ing them one at a I lme

Error recognition is based oriregular expressions and therefore

l.
"u.iiv "*tJnrible

The regular expressions are stored in a file

and read into the p'og'"t-b' i ld"r during init ial izat ion The i i le

supplied with the program builder contains expresstons for al l

of the languages supported by the HP SoftBench system (HP

6boo s"riJre6o and Series 800 compiter errors are recognized).

in" u."r."n.rpply a f i le to be used in place of the default f i le '

To be recognized, all errors must contain a filename and a

l ine number. The error need not be specif ied on a single l ine'

;rt ."y span several' as ior the Series 800 Pascal compller'

in" lt, that contains the regular expressions supports syntax

James W' Wicheman

Software DeveloPment Engineer

Software Engineering Systems Division

JUNE 1990 HEWLETT-PAcKARo 'touRrueu 53

Static Analyzer

The Hp SoftBench static analyzer aids the user in understand-
llg^::ir_"9

code. Fig. 1 shows its user interface. tt supportstanguage independent queries about code structure and pro_vides cross-reference information that can help in fhorng Oetects,planning code changes,.or evaluating a piece of software forreuse. Message communication with thie O"u"tpr"nt manager,p1?9r"r editor, and program buitder enhances its abitity to pro-vide window-based, interactive analysis.
The static analyzer receives its information from the complter,much the same as a debugger does. This has the advantage

ll^.::lt:^"^9.de
is parsed once and tne resuiis""re snareooerween static analysis, debugging, and program executton.The compiler collects cross_reference iniorri"tioniol. rhe staticanalyzer on all identifiers within a program

"nO ""i"gori.., "".f,occurrence by how it is used. An assignment Jtatement iscategorized as a modification to the identifLr being assigned to,while a variable definition is categorized as a definition. The staticanatyzer supporrs queries thar return a .i"gi;;;;g;;y or groupof categories of references about an identifier. Ofte"n a user onlywants to see where the value of a variable n"a O""n changedor how a function has been defined or declared in Oifterenr moO-ules. The static analyzer supports these queries direcily, return_ing only the relevant informatton.
A program may have many identifiers that have the same name,but because they are different program erements or have ditferentscopes, they refer to different objects. For instance, a structurefield named srime may be definei *ithin il; ;;;r-lnt'strucrures

and therefore represent two distinct entities thai Jouro not beconfused during anarysis. when onry ilre nar" si.Jl, un,"r"oand its uses are requested, the stjtic
"nufyr"i*iff

return theuses of both fields because both are n"r"O
"iir"

uni huu",.u..However, if the user identifies stime by selecting it withln a sourcecode view, then there is enough location information to indicatewhich field is wanted, and only the referenceslo in" .","","0stime will be returned.
Coupling these capabilities with program structure quenes pro_vides a tool streamlined for understanding and iacilitatingcnanges to software. By allowing the user to aJk questions aoouta program, browse results to see program

"ont""i, "no
use the

buil t- in language-sensjt ive edit ing, the Hp SoftBench envrron_ment provides the user with a productive environment for sottwareunderstanding and software chanoe.

Gary L. Thunquest
John p. Dutton

Software Development Engineers
Sottware Engineerlng Systems Djvision

Fi le Edit Buffer

Declarat lons ()

Def ini t ion ()

U s e s ()

MrLl i f i r :at i t rrrs ()

m i n . c (7 6) , m i

d , n u d i o _ t o 8 g I . , s t a .

l !g . [91 , " rower" , r

t i h E o n r d (t o p l c v . l ,
" l

F i la hp f cmrc : , /usc r s / c a Bdn/ p t o J . c t /Toue r /ma in . c

a u d i o _ v . l u . - l r u c i

/ + I n i t i . l i z e t h e I n t r i n s i c a , /

: : l l : 1 e '
- . . I : f i : i a r i z e (a r e v l o i , " r o w e r " , N U L L , 0 , B a r B c , aor spray _ xtDi :pray (! ! t ! l t ! !g

;

/ t C r c a t c a b u l l c t i h b o . r d * /

iff:;:r;.ffiii i l:aBur
r'tlhBoa rd (topr eve r

"'bboa
rd", iluLL, B)

/ * Deno fo r cay t . * /

. u d l o - t o 8 8 l . -) b C r e a t e T o R p I e B u

+:::n j:#:::L;jF:j:;.:ril::;;:::," :;:';:;;,:'l:;

Fig. 1. Stalic analyzer user tntertace.

(continued from page 49)

Program Test
The program construction task results in an executableprogram. However, this does not mean that the prog.u_implementation perfectly meets its a"rig" ,"qrirements.

T* l:rf or analyzing thl programl. rJ"?irrv and correctdetects in implementation and design is known as the pro_gram test task. On large projects, this is often a very difficultprocess.
The Hp SoftBench environment provides strong supportfor.understanding both the ,t.uiirrr"-i"iir. the staticanalyzer) and the behavior (with the p."gi"*'a"lugger) oflarge, complex applications.

_
The program debugger (see,box, page 5s) provides pro-gram execution in a controlled

".,rri.onmerri.'The user canstep through the program, watching fo*p".ri" conditions,pausing at any time to examine the state of data structures,and monitoring the controf flow thrffi tfrJi,".iorrc p"tfrof the program. If a variable ir ro*"tio- il"i.rg ,"t to u.,

54 riewren-pncxAnD JouRNAL JUNE i99o

illegal value, the user can trace the variable to locate theconditions and location o{ the improp".
"rrig"_"nt.

If afunction is being called when tr;h;;l;;iil, the user canmonitorthe execution, watching for the
"o.r-ji,ro.r,

whichcaused this call.

-In analyzing the behavior of complex applications, it isoften useful to view the execution at iowu, i".rul, of abstrac_tion' The program debugger can simultaneously show theprogram's source code, the assembly
"oa",

u.ra the proces_sor's register contents. The program d;-b"g;;. can walkthrough the program,s execution either at ihe assemblystatement level or at the source statement level.The static analyzer is often ,rJ h;;;-i;"t u.ra _ur, ,n"program debugger. For example, it u ,r".i"li" is being setto-an illegal varue, the static analyze. ia".rtifi", uil locationswhere the specific variable.is set, and4;;;;; debuggercan be used to set tracepoints at each of these rocations.When a problem has been lo""t"J u;J;';;;r" has been
rued on page 56)

Program Debugger

The HP SoftBench program debugger provides a powerful yet

simple user interface to the HP-UX symbolic debugger xdb, mak-
ing users effective in their debugging tasks with a minimum of
effort. We were surprised to learn how many users avoid using
some HP-UX debuggers because of the difficulty of learning their
command languages. These users would rather resort to some
of the most tedious and time-consuming methods of tracking
down simple bugs than master some esoteric tool.

Other goals for the program debugger were integration with
the other HP SoftBench tools, provision of added value over the
standard HP-UX symbolic debugger, and exploration of the po-

tential for automated use of tools in the future.

User Interface
Using the HP SoftBench program debugger, software develop-

ers can become proficient at common debugging tasks in very
short order, even if they are not familiar with the standard HP-UX
debuggers. Pull-down menus and accelerator buttons, along with
point and select operations with the mouse, provtde a very simple
means Jor entering powerful debugging commands (see Fig. 1).
Almost all of the functionality of the standard HP-UX debugger
is available via mouse-oriented commands. Many sophisticated
sequences of commands are also made avai lable with a single
menu selection. When the user must use a more esoteric com-
mand, i t is possible to type i t in direct ly to the HP-UX debugger.

The program debugger extends the user's view of the program
being debugged by allowing more simultaneous views than stan-
dard debuggers (see Fig. 2). The user can see program inpuuout-
put, debugger input/output, source code, assembly instruct ions,
register sets, and even the state of signals being handled by the Fig. 1, Entering program debugger commands.

Fig,2. Multiple views of program
execution in the program de-
bugger.

Execut ion Trace Show Help

j . c t T o w e r / t o w c r

User P'oqram l/O

m i n . c : t u i n : J 9 : p i n [3] . r i n s - c o u n t ' 0 ;

m i i n . c : m i n : 4 l : p i n [l] . r o c a t l o n ' P I I 1 - X ;

D a i n . c : m 1 n : 4 2 : p i n [2 l . t o c r t i o n - F I N 2 - x ;

n a i n . c : m a i n : 4 3 : p i n [3] . I o c . t i o n - P I N 3 - X ;

At Procedure Entry ()

F i n I l] . l o c a t i o n
- P I { l - x i

p i n [2] . r o c a t i o n - P l x 2 - x ;

! i n [3] . I o c a r i o n
- P I N 3 - x ;

r u L c o u n t - 1 ;

a u d l o - v a I u . - T r u ! ;

/ x I n i t i a l i z e t h 6 I n t r i n s l c s * /

Fi le Brealpoints Execut ion Ttace
7 8 : a x 0 0 o 0 0 3 f a - s h u f f l e + o 8 7 8 n o v . l a

8x000003fc - ihuff te+0074 subq, I &
8x00000a00 -Jhuff l .+0076 nov. I 7.
ex00000402 -shuff lc+8878 noY,1 0
8x00008486 -shuff le+Og7c nov. I I
8x0000840r - ihuff l .+0888 nov. I 0
8 x 0 0 0 0 0 4 0 c - s h u f f l . + 0 8 8 4 j s r
Sx80000414 - lhuff lc+808. lcr 0

a8: AxBBOots4le -5huff t6€88. unlk %
8x0600041a -shuff l r+089e rts
4 x 0 0 4 6 0 4 1 c s i t r l i n k . l Z
8XOO8OO422 sin +80e6 nom' I &
Sx00000426 .sln +000. fDom.x &

3 5 : 0 x 0 0 0 0 8 4 3 8 . s i n + 0 0 1 4 c 1 r . 1
3 7 : 8 x 0 0 8 0 0 4 3 4 . s i n + O 0 1 8 l c d

0XOOOO043. .sLn +081c Dovq &
OXO0OOO43C .4in +0029 nov. l 7"

38: Ox0O00043o .sin +8O22 1ca
O x O O O 0 O 4 4 4 4 i n + O O 2 S c l r . I (

39: ox00000446 -stn +002r t .a

Contcxs hp f cnrc : , /uscrs /ca gan/P ro j ac t

Pc: min Fil.: Din. c L'trE 38 D.pth a

F i le hp f cmrc : , /uscrs / ccaa^ /P r . l . c t /T ov e

n t n (a r g c , n r r)

i n t n r t c ;

c h r r x a r e v [] ;

{
HidSct toplevct, bboard, aud
i n t n - 0 ;

, i n [1] , r t n g - c o u n t - c o U N T ;

f t n [2] , ' t n 8 - c o u n t - 8 ;
p r n t r j . r l n L c o u n l r s i

p i n [1] . l o c a t t o n - P I x l - x ;

A roglst.rs: D rcgisters:

o @ @
I oxff . f fcs8 0x000oo€0ts

2 s x f f c f d r n 4 0 x o 0 B o 0 0 0 l

3 sxffcf fbdc 0x00600003

a ex0005868c 8x80000006

5 0x0005860c 0x00000001

6(fr .md Oxffcf fca4 0i00000001

7(st.ck) Sxffef fc30 8x00600021

f-- cb;---l

m i n . c : n L n : 3 ? : p i n [1] . r t n B . - c o u n t

b r c . k p o l h t a t 0 x 4 3 .

' r l n . c : i l i n : 3 8 : p i n [2] . r i n g - c o u r , t

r99o HEWLETT PAcKARD JoURNAL 55

debugger-al l at the same t ime i f desired. Because these views
are in separate windows, they are not constrained by the same
space resources as in conventional, terminal-oriented Hp-UX
oeDuggers.

One of the most useful features is separation of the l/O streams
for the HP-UX debugger and the program being debugged into
separate window panes. This al lows the user to see (and re-
member) what the program is doing without sorting through con-
fusing debugger commands, prompts, and printouts. Each of
these views is scrol lable and editable, al lowing the user to review
and repeat Drevious entries.

Added Value
Since the program debugger is implemented using the Hp

SoftBench distr ibuted support mechanisms, users can debug
programs on other machines and with distr ibuted source f i les
without doing any extra work. The program debugger takes care
of start ing the HP-UX debugger on the correct machine (the one
hosting the executable f i le) and establ ishes al l the necessary
interprocess communication. While this is not a substi tute for
nonintrusive distr ibuted debugging, i t does satisfy the distr ibuted
debugging needs of many users.

For appl icat ions with signal handlers that must be debugged,
the program debugger has a special window to help rne user
monitor signals that are received, handle each signal special ly,
and send specif ic signals to the application. Al l of this can be
done without going to a terminal window and without looking up
process lD numbers and signal numbers.

Program debugger users rarely need to know about process
lD numbers, even when sending signals to their appl icat ions or
when adopting already running processes. The task of remem-

bering the lD numbers when a process is forked or of looking
up the process lD number (with /bin/ps) using the program's name
is handled automatically.

The standard HP-UX symbolic debuggers give minimal sup-
port for monitoring the value of program variables. l t is possible
to set up assertions that show the value after each instruction
executed (slowing execution incredibly), or to set up breakpoints
to show the value at spectfic points in the program, but great
imagination (and tedium) are required to do much more. The Hp
SoftBench program debugger al lows the user to specify a vari-
able to be traced and then uses a ralher involved set of break-
points and assertions to implement a primitive but often useful
variable tracing laci l i ty.

Automated Tool Use
The HP SoftBench tool integration architecture allows tools to

communicate with each other by means of request and notifica-
t ion messages. While the current HP SoftBench tools only docu-
ment a l imited set of requests, i t is possible for tools such as the
program debugger to be control led entirely by a program rather
than a person. For example, tool bui lders can use the Hp Encap-
sulator (see art icle, page 59) to construct higher-level tools that
issue requests to the stat ic analyzer and the program debugger.
These higher-level tools can monitor program data strucrure re-
ferences or modifications, perform branch flow analysis, monitor
performance, or handle dozens of other useful operations.

Robert A. Morain
Robeft B. Heckendorn

Software Development Engineers
Software Engineering Systems Division

made, it is important to be able to assess the impact of the
change. For example, if a function needs an additional
argument, all calls to the function must be located and
modified. If a function's return value must be changed, all
locations in the project that use this function's return value
must be identified and changed. The static analyzer facili-
tates these activities.

Program Maintenance
Program maintenance is similar to program test. Software

requirements change over time, and modifications may be
needed to the program for reasons other than defects in
the program. The programmers who maintain applications
are often not the original developers and may need assis-
tance to understand the design and implementation of the
program so that they can make the necessary modifications
effectively. These factors make the ability to understand
the application crucial. In fact, much of what software
maintenance programmers do is work on understanding
the applications they maintain and assess the impact of
proposed changes. While the changes themselves are often
small, identifying the source of the problem, designing an
appropriate change, and assessing the impact of the pro-
posed change is often very difficult and time-consuming.

The static analyzer and the program debugger are the
primary tools for helping the maintainer understand the
application, identify the problem, and assess the impact
of proposed changes. The program editor and the program
builder are used to reconstruct the modified application
and the static analyzer and the program debugger are used

56 tewrErr-pecxARD JoURNAL JUNE 1990

to test the changes. If the modifications to the application
caused a change in the module dependencies (for example,
if a new module was added), then the program builder will
update its data base of dependencies (the makefile).

In addition to locating specific conditions in the program,
the static analyzer and the program debugger help the pro-
gram maintainer work backwards from the symptom to the
cause. For example, if the user of an application reports a
problem when a specific error message is displayed, the
program maintainer can ask the static analyzer to show the
locations in the program where the message is displayed.
The program debugger can then be instructed to monitor
those points as the maintainer reconstructs the scenario
that led to the error message. Once the problem situation
is duplicated, the maintainer uses the program debugger
to examine the state of the application and determine the
function call sequence and data structure state that caused
the defect situation.

Conclusion
We have described how the HP SoftBench environment

is used to support team file management, team communi-
cation, program construction, program test, and program
maintenance. The goal was to illustrate not only the fea-
tures of each of the HP SoftBench software development
tools, but to demonstrate the synergy that can be achieved
by letting the tools collaborate to provide a task-oriented
software development environment.

With the HP Encapsulator product described in the arti-
cle on page 59, common development activities involving

lued on page 58)

Integrated Help

The HP SoftBench help faci l i ty (see Fig. 1)is independent of
the tools for which it provides help. For efficiency, the help appli-
cation is combined with the tool manager.

Each tool contains a help pull-down menu containing ltem Help
and Application Help entries. When a user asks for nem Help, the
mouse sprite changes into a question mark. The user can then
point at a region of any HP SoftBench application and help text
describing that part of the tool will appear in the help window.

Each piece of text is displayed with a list of related topics.
Selecting the related topic causes the text for that topic to appear.
The cross references can point to topics inside another tool,

The normal HP SoftBench intertool communication mecha-
nisms are used to drive the help system. When a user selects
Application Help, a request is sent to the help system to display
the informatlon. The tool is not aware of its own or any other tool's
helo text.

The help data base and communication between the other HP
SoftBench tools and the help tool (the ftem Help lookup mecha-
nism) require no cooperation from any application as long as it
is implemented with the HP widgets and the X toolkit (which
stores the needed properties on the widget windows). The help
menu items do require minimal cooperation from the application,
of course. ldeally, dependence on the HP widgets would not
have been needed, but the information provided by applications
complying with the lnter-Client Communication Conventions
Manual (see box, page 23) or by the X toolkit (Xt Intrinsics) is
not sufficient for this level ol detail.

Intorlace between Tools and the Help System
HP SoftBench tools communicate with the help system via the

X protocol and the HP SoftBench broadcast message server'
Requests for ltem Help and Application Help are sent as request
messages to the help tool. A request tor Application Help includes
the application class of the application, and a request for ltem
Hetp causes the help tool to grab the pointer (changing the pointer

to a question mark temporarily). For ltem Help, the help tool has

to tigure out which widget was selected. This is done without the
assistance of the specific applicatlon as long as the application
is built using HP widgets. Each widget window stores a property

XW-CLASS, which contalns the widget name and the class of the
widget window. The top-level window also stores the WM-GLASS
property containing the name and class of the application (as

defined by the /nter-Cllent Communication Conventions Manual).
When the user selects a window, the help tool determines the

smallest enclosing window containing the pointer and then
traverses the window hierarchy outward to determine the widget
namelist and classlist used in a resource specification in the X
resource manager. lt looks these up in the help data base to
locate the help text associated with the help window. This same
mechanism is used by the automated test facilities described in
"Architectural Support for Automated Testing" on page 37.

John R. Diamant
Software Development Engineer

Soltware Engineering Systems Division

Fig. 1. HPSoftBench on-line helP.

Fi le Edit Euffer Show History Seft ings

contexc hp f mrc : /us . rs lca8an, /Pro j ec t T

aue.Y: Rc f . r .nc .s tusu l ts 5

m a i n . c (3 a) , D i n : W i d B c t t o p l e v . 1 , b b o a r d

h a i n . c (4 9) , n a i n : t o p l c v c l - X t l n i t i a l i z e

m . i n . c (5 3) , m i n : b b o a r d - : (r C r e . t " B u I l . t i

m a i n . c (7 6) , n i n : X t R c a l t z c w i d r e t (t o F I € v e I x.v*-atlffilL*npl

T h ! s c o p i n t b u t t o n a l l o e s y o u t o i e l e c t w h e t h c r

s c o p i n t s h o u l d b . u s . d o n a r r s h o w " q u e r y .

H h . n a p r o R r . D r d e n t i J i e r i s s e l e c r . d f r o m t h c

r a i t r r . " . . t l " $ f i R . s u l t s A r . n , i t i s

a u t o D . t i c . l l y p u t i n t o t h . r r O : " i n p u t b o x a n d

t h c s c o p i n B t o 8 g 1 e l s s e t . T h e s c o P i n S t o 8 8] .

i n d i c . t c s t h a t t h e i d . n t i f i c r ' s l o c a t i o n
(r l l c n a n e a n d l i n a n m b c r) v i t h j . n t h c s o u r c c

f i l e i s u s e d t o r e t u r n r . s u l t s o n t h c . x a c t

.ud io -va luc - T ruc t

/ x I h l t i a l i z € t h c I n t r i n s t c a x /

t o p l . v c l - X t T n i L i r l i ' . (. r B v [0] , " T o . e r "
di spray - xtDispray(@!!!lp ;

/ * c . c . r . I b u l l c t i n b o a r d * /

b b o a . d -) b C r . a t c B u I l c t i n B o a r d (t o p l c v c l ,

X t i ldna 8 .ch i ld (bbo. !d) ;

/ * DeDo fo r Gayra x /

aud io - tog t te - XDCr la t .ToBEleBut ton

XtAddEy.n tHand l . r (aud io - toBg1. , But tonP. .
ysTogBI6But tonSetSt r te (tud to- tog8 lc , T ru .

JUNE 1 990 HEWLETT,pAcKARD JoURNAL 57

the HP SoftBench tools can be automated.

Acknowledgments
The HP SoftBench software development tools were de-

signed and built by Martin Cagan, fohn Dutton, Jorge
Gautier, Robert Heckendorn, Caroline Koff, Bob Morain,
fohn Repko, Nancy Steffens, Gary Thunquest, Anthony
Walker, Jim Whalen, and Jim Wichelman. The HP
SoftBench team is grateful to the HP California Language
Laboratory for providing the underlying support for static
analysis, and to the HP Colorado Language Laboratory for
their help with the underlying debugger support.

58 rrwrerr PACKARD JoURNAL JUNE 1990

HP Encapsulator: Bridging the Generation
Gap
By means of the Encapsulator description language, a user
can integrate fools into the HP SoftBench environment
without modifying their source code, and can tailor the HP
SoftBench environment to support a particular software
developmenl process.

by Brian D. Fromme

HE HP ENCAPSULATOR is the tool integration and
process specification facility of the HP SoftBench
environment. It allows an HP SoftBench user to pro-

mote existing tools to be fully consistent, integrated HP

SoftBench tools and to tailor the HP SoftBench environ-

ment to support a specific software development process.

The HP Encapsulator provides customization and exten-

sion capabilities for automating organization, team, and
personal software development processes using event trig-
gers.

Integrating Existing Tools

The HP Encapsulator can handle a range of existing ap-
plications. It is designed to handle programs written in the

style of programs for the UNIX* operating system, that is,

programs that have a command-line interface to their func-

tionality. Examples of this sort of program are nearly all
UNIX tools (tar, prof, adb), customer-developed scripts and

utility programs, and many third-party tools (e.g., McCabe's

.UNIX is a registered trademark of AT&T in the U.S.A. and other countries.

ACT, Verilog's Logiscope, Softool's CCC, and SMDS's Aide-
de-Camp).

From the user's point of view, an encapsulated tool looks
and behaves iust as the core HP SoftBench tools do. In fact,
one of the core HP SoftBench tools is actually an encapsu-
lation-the HP SoftBench mail tool is an encapsulation of
the HP-UX tool mailx. This encapsulation will be described
in more detail later in this article.

The HP Encapsulator can be used either to add a new
tool to the HP SoftBench environment or to replace an
existing HP SoftBench tool or another encapsulated tool.
The HP SoftBench architecture is designed to facilitate this
substitution of tools.

Tool Encapsulation Overview
Encapsulating a tool means integrating the tool into the

HP SoftBench tool integration architecture. The HP Encap-
sulator is the liaison between the existing tool and the rest
of the HP SoftBench environment. It plays the role of trans-
lator of commands, actions, and presentation.

Fig. 1. Original user inbrtace of
the HP-UX terminal-based mail
fool mailx.

JUNE 1990 HEWLETT-pAcKARo rounur 59

I=
t - Mai lx 1l
I
l 5 / u s e r s / c a g a n) m l l x

f m l l x R e v i s i o n ; 6 4 . 6 4 D a t c t 8 9 / 8 7 / 2 4 8 9 : 2 1 : 0 8 T y p e ? f o r h e l p .

l " /wsr /ma l l / caganr r : 6 mcssatcs 2 unread

| 1 c la t re -ph t l l tps%g70hpc660.hp l .hp .com Tue Scp 26 87 t39 122/5487 Ycr l log

I i s i t R e p o r t

| 2 c a g a n 0 h p f c J r d . s d o . h p . c o m T u e O c t 3 1 7 : 2 O 7 2 / 2 9 9 9 E x p o s l n g S o f t B e n c h I

I t c g r
| 3 caro l -s laco tos%a20hp l9BB Fr i oc t 6 2?r11 4g /1337 l ' lAP

I A € n p f c f p . s d o . h p . c o m r & n l r s a . l n r l a . f r : r o o t G c o l u b o . l n r i a . f r l { c d O c t 1 1 8 2 : 5 5

| 3 3 , / 1 0 4 3 R c : A n o t h c r t r y . . .

f)U 5 wa l tck tohpfc lk .sdc .hp .con Sun Oc i ' 29 12228 2A/999 TEST RESULTS

I u o tae- t ru f fmn%000hp4028 Sun Oct 29 14 :55 107/4131 Y ldeo Thoughts

l ? l
I
I
I
I
I
I
J
I

Integrating a tool using the HP Encapsulator provides
the following benefits:
r Provides a link to the HP SoftBench event trigger facility.
r Provides an HP SoftBench-compatible, OSF/lvlotif-style

user interface (see article, page 6).
r Uses HP SoftBench distributed execution to support re-

mote subprocess execution.
r Uses the HP SoftBench network-wide communication

facility.
An important aspect of the HP Encapsulator is that no

source code modifications are necessary to the tool being
encapsulated. This allows customers to integrate pur-
chased tools for which no source code is available.

There are also some limitations of encapsulation that
should be understood before an encapsulation program is
attempted. The HP Encapsulator only supports encapsula-
tion of tools written in the UNIX command-line interface
model. Tools that have highly interactive or graphical user
interfaces are often not good candidates for encapsulation
because the HP Encapsulator cannot understand what the
tool is doing or has done. User interface potential is also
limited by output from the encapsulated tool. If the tool
does not provide error messages or some sort of output
stream (typically stdout or stden), the HP Encapsulator is
constrained in its ability to interpret what the tool has
done. Another limitation is that event granularity for trig-
gers and notifications-that is, the level of detail at which
events can be specified-is only as fine as can be initiated
and recognized from the encapsulated tool. To achieve the
same level of event granularity as the other HP SoftBench
tools, each atomic operation needs a unique command-line

interface.

The HP SoftBench Mail Encapsulation
Before the design details of the HP Encapsulator are de-

scribed, a sophisticated encapsulation will be presented to
illustrate the concepts that have been presented so far.

The encapsulation to be described is the Hp SoftBench
mail tool. This tool is provided with the Hp SoftBench tool
set, and most users are not aware that it is an encapsulation
rather than a native tool like the other Hp SoftBench tools.
The HP SoftBench mail tool is actually an encapsulation
of the HP-UX mailx program. The mailx program was not
modified in any way.

Fig. 1 shows the original terminal-based interface to maitx,
and Fig. 2 shows the encapsulation. Before encapsulating,
mailx was not related or linked to the other Hp SoftBench
tools in any way. The encapsulated version, on the other
hand, has useful links to the other HP SoftBench tools. For
example, the user can configure HP SoftBench mail to send
a mail message to the proiect team whenever a project build
has completed successfully. With the HP Encapsulator,
customers can customize the specific conditions and ac-
tions to meet their particular needs.

Other Encapsulations
Many other tools have also been encapsulated. Fig. 3

shows the encapsulation of the HP-UX performance profil-
ing tool prof(1). Fig. 4 shows an experimental encapsulation
of the Analysis of Complexity Tool for metrics collection
and structured testing support from McCabe and As-
sociates. Fig. 5 shows a trigger panel with which the user

Feply to Author...

Eeply to All...

s t e v e O h p f o o . s d e . h p . c o m H e d N o v 1
a m e s @ h p g v d . s d e . h p . c o m H e d N o y I

I
2

1 3/ 39A
1 3/390

F i l e c a l l b a c k s . c
B u i l d S u c c e s s f u l

4 c h r i P r o j e c t I t i l e s t o n e s

Mai l Folder Message Sett ings Help

I ' l essage- Id : <9092122205. AA043706hpbar . sde ,hp , com)
T o : c o l i n 6 h p l s f . s d e . h p . c o m
S u b j e c t : R e l e a s e P a r t y
Sta tus : RO

T h e r e w i l l b e a p a r t y t o c e l e b r a t e
t h e T o w e r p r o j e c t o n J a n 1 8 , 1 9 9 0 .
y o u c a n a l l b e t h e r e :

P l a c e : C u i s i n e C u i s i . n e
T i n e : 8 ; O B p n
D a t e : J a n u a r y 1 8 , 1 9 9 0

A t t i r e : B l a c k T i e

Janet

Fig. 2. User interface of the HP
SoftBench mail tool, an encapsu-
Iation of maitx.

60 rewrerr,pacxARD JoURNAL JUNE 1990

Fi le Per fo rmance Program Funct ion Sef t ings He lp

Function Nomc !6Timc Seconds Cumsecs #Calls Msec/call

_ d o p r n t 1 0 0 , 9 8 . 8 2 8 . B Z l 0 2 . 8 0
s u f a c t o r s 8 . 8 8 . 0 0 E . g z I 0 . 0 0
n w - d i v 8 . 8 0 . 0 0 0 . 0 2 1 0 . 0 0
eu l i r_ph i ts . O B. SB 0 .02 1 0 .00
f a c t o r s t o a 8 . 0 B . S 0 0 . 0 2 1 8 . 0 0
i t o a 8 . B 0 . 0 0 E . B Z 5 0 . 0 0

g e t n w S . 8 0 . O O S . 0 2 2 S . 0 0
m o n i t o r 8 . 8 8 . 8 8 0 . 0 2 2 0 . 0 8
c r . a t 0 , B B . 0 B 0 . B 2 I 0 . 0 0
p r o f j . I B . S 0 . B 0 0 . 0 2 2 0 . O 0
p u t . 0 . 0 I ' S 0 0 . 0 2 1 0 . 0 0
l r i n t f e . B 0 . 0 0 0 . 0 2 9 8 . 0 0

Fag.3. Encapsulation of the HP-UX pertormance profiling
tool prol.

can configure the relationship between the McCabe testing

tools and the rest of the development environment.

Prototype encapsulations have been written for config-

uration management, documentation, testing tools, and

language-based environments such as Lisp and Ada.

Encapsulator Description Language
The Encopsulotor description .longuoge (EDL) is a

specification Ianguage designed to simplify the task of de-

scribing an encapsulation. The primary reason for encap-

sulating a tool into the HP SoftBench environment is to

allow that tool to make use of the HP SoftBench architec-

ture, primarily the broadcast message server and aspects
of the distributed environment. Therefore, these architec-

tural features have been made accessible in EDL.
From the perspective of the encapsulation system, there

are two main components in an encapsulation: interfaces

and actions. Interfaces are connectors to the outside world,

such as the window system or the HP SoftBench message

system. Actions are the steps to be taken when certain

Fig. 4. Encapsulation of the Analysis of Complextty Tool
(ACT) fron McCabe and Assoclates.

conditions are met on an interface. EDL defines a set of
interfaces and data types that link conditions in an interface
to actions that the user provides to respond to that condi-
tion. The actions are EDL code to be executed.

EDL has conventional programming language constructs
such as data types, variables, operators, flow-of-control
clauses. and user-defined functions. EDL also contains a
rich set of built-in functions, which provide a programmat-
ic interface into the HP SoftBench architecture as well as
the underlying window system. The EDL data types are
string, integer, Boolean, attribute, event, and object. There
are C-like operators that can be used to form expressions.
There are two flow-of-control clauses: if and while. User-de-
fined functions can be used to group and define parameters
for EDL statements. but are most useful as actions for re-
sponding to conditions.

A programmer develops EDL code much as one would
develop code in other specification-language-based envi-
ronments, that is, by first entering the EDL source text into
a file, then invoking the HP Encapsulator over that file.
See page 67 for a description of how the HP Encapsulator
executes the EDL code.

lnterfaces
Four interfaces are defined in the Encapsulator descrip-

tion language. They are the user, message, application, and
system interfaces. The user interface is the window system,
the message interface is the HP SoftBench broadcast mes-
sage server, the application interface is the encapsulated
program or subprocess, and the system interface is the
operating system. Conditions on an interface are called
events.

An event is a data type in EDL. Events have three com-
ponents, a type, a pottern, and an oction. The type defines
the interface to which an event corresponds. The type
specifier is the identifier or the name of the interface. Thus
the user interface has events of type user. The pattern is
the condition to be met on an interface. A pattern is a string
that identifies either the name or the form of a condition.
For example, application events use the HP-UX regular

Automatic Pdsino: C On File Check In

O On Build

f On Relcase ljpdatc

Auto Show Flow Graoh: O On Static "Show Calle'

Automatlc Tcst P.th ReDortino: C On File Check In

C On Build

C OnBeloascUpdatcSend tol q

Automntic Metrics Beoortino: f On Filc Check ln

C On Build

O On Release Update

E
SeDd to: ca8an, qa, mgnt

lvtini,.u-"tct,
fl

Minimum

er.;" I

Fig. 5. Irlggers for the encapsulation of McCabe's ACT

Flle Program Structure Tests Seftlngs Help

Context: hpf cmrc : /usc rs/ca gan,/Src,/Robot

, ronr"* i l

Nod6 Modub e(G) cv(G)

oErn robot r lndov

6 s c a l c 3 d
7 mkc_normLs
I flnd_norrol.s

39 rot.tc3d
42 dr r {_ robot
43 opcn_d lsp lay
52 t r .n r la tc3d
69 ro ta t r robot

1
4

l 6
3
'I

2
I
4

JUNE ,1 990 HEWLETT-PACKARD JOURNAL 61

expression pattern matching facility, so the pattern is a
string that describes a regular expression to that pattern
matcher.

An example should help clarify how an event is declared.
This event will occur when the encapsulated program mailx
finds that there is no new mail available.

First, we declare an event variable.

event mail)Levent;

Now we assign that variable a newly created application
event. The event corresponds to the condition that mailx
has written the text "No mail for Fromme" to stdout (its
standard output file).

mail)Levent : make_event(Application, "^No mail for (.')gOtn",
no_mait(90));

Finally, we add this event into the Iist of active events.

add_event(mai lx_event) ;

Events can be activated and deactivated via built-in func-
tions in EDL. This allows the user to control which condi-
tions can be met at a given time. When an event is defined
in the user interface, that event must correspond to a par-
ticular object in the window system. EDL objects will be
explained in more detail later.

Actions
Actions are the steps to be taken when certain conditions

are met on an interface. In the example above, the action
to be taken when the regular expression is matched is a
call to the function no_maitQ. Actions can be arbitrary state-
ments of EDL code. In use, however, actions are typically
calls to functions that are defined by the user. This makes
the declaration of an event more readable and more easily
changed or configured.

For example, we will define the function no_maitfl, which
is to be called when the HP Encapsulator sees the no-mail
pattern from mailx. Note that the argument passed to the
no-mail$ function from the event is $0. This is the EDL
syntax for the special string variables that retrieve portions
of a regular expression. In this case, $0 will be the name
of the user running the SoftBench mail tool.

/.This function is called when mailx tells us there is no new mail -/

function no_mail(user)
string user;

{
/' Let the user know that there is no new mail in the mailbox "/
clea(headers);
freeze_buttons0;

/- Clear mail headers list ./

/" Make the buttons insensitive '/

/'This is a local string variable that holds the dialog prompt -/

string info : prinlto_string("User %s has no new mail", user);

/' Now pop up the dialog box to inform the user */

error(lnformation, info);

/" No need to return data from this function */

I

62 nEwLert-pacxeBD JoURNAL JUNE 1990

Notice that the action function calls other functions,
some of which are built-in EDL functions and some of
which are user-defined functions. This example shows how
we have taken a condition from the terminal based mailx
application and turned it into an information dialog box
via a call to the built-in EDL function error0.

User Interface
The user interface is the window environment in which

a user can interact with the encapsulation. Components of
the user interface are referred to as objects. An object is
any visual device that conveys information between the
user and the program---examples are labels, buttons,
menus, and editable f ields. An object is also a data type in
EDL. Objects are EDL representations of physical entities
on the screen. There are two types of EDL objects: monoger
and primitive. Manager objects can control other objects
while primitive objects cannot. The set of EDL manager
objects includes Toplevel, Transient, Pulldown, and Pane, while
the set of EDL primitive oblects includes MenuButton,
Menuseparator, Command, Label, Edit, List, Toggle, and lmage.

To define a user interface in EDL, one specifies the hierar-
chy of manager and primitive objects that compose each
window as EDL statements. The following example will
create a window with two objects, a Labet object and an Edit
object.

First, we declare the window and its first pane, both of
which are manager objects.

object mail_window = make_manage(NULl, Toplevel,
"MailWindow");

object pane : make_manager(mail_window, Pane, "tirstpane");

Now we declare the components of the pane, both of which
are primitive oblects.

object targellabel : make_obiect(pane, "target", Laber,
"Target: ");

object targeLvalue : make_object(pane, "value", Edit,
geLcontext-file0);

In this example, the elements of a Toplevel window have
been described. Manager objects are declared with the
built-in EDL function make-managerQ, while primitive ob-
jects are declared with the built-in EDL function make_ob-
jectQ. The parameters of these built-in functions describe
information about how to create such an object when the
time comes, such as the parent (or manager) of this oblect,
the name, the type, and the label (or initial value to be
displayed within the object). Objects described in this way
are not created until their entire window is needed. This
is achieved via a call to the built-in EDL function disptayQ.

To take an action in the user interface, the user often
presses the left mouse key (mapped to the Setect action)
while the mouse cursor is over the object that describes
the action. To define the action in EDL, the programmer
must associate a user event with a user interface obiect.
Thus, each user interface object is associated with distinct
events or actions. Several objects can be associated with a
single event. The following example creates three Toggle
buttons and two events. A Toggle button is a user interface

obiect that represents either an on or an off state. The two

events are used to determine when the user turns the button

on and off.
First, we create two events that trigger actions for any of

the three Toggle buttons.

event toggle-on : make-event(User, "Select", toggle(True));

event toggle-off : make-event(User, "Belease", toggle(False));

Then we declare three Toggle button objects'

object a, b, c;

Notice that we pass both events to each of these obiects.

a : make-obiect(pane, "a", Toggle, "Me", NULL' toggle-on,

toggle-off);
b : make-object(pane, "b", Toggle, "Myself", NULL, toggle-on'

toggle-off);
c : make-object(pane, "c", Toggle, "1", NULL' toggle-on'

toggle-otf);

This function handles both the on and the off states for

these Toggle buttons.

tunction toggle(on)
boolean on;

I

/- Get the object with which this event is associated '/

object this-button : selfQ;
/" lf we selected one of these buttons, then release the

" others. This makes the buttons exclusive (only one can
* be set at any given time). '/

it (on) {

/- Send the "Belease" event to all buttons but this one '/

if (this-button != a) send-event(a, toggle-off);
if (this-button !: b) send-event(b, toggle-off);
if (this-button !: c) send-event(c, toggle-ofi);

)
)

This example defines a window object and its action'

Another aspect of the user interface is the appearance of

an obiect, such as width, height, color, and character font.

In EDL, these characteristics of an object are referred to as

ottributes. An attribute is a data type in EDL. There are

two attribute operators: merge and associate. The merge

operator is used to combine a single attribute into a set of

attributes called an attribute list. The associate operator is

used to combine a value with a named attribute. As can

be seen in the following example, the WIDTH attribute allows

an associated value, while the SINGLELINE attribute does

not. The example illustrates the creation of a single-line,

labeled, editable f ield of a certain width.

object label, edit;
attribute attr;

The following attribute merges a font description with a

specified width and also tells the Label object to put the

text as far left as possible.

attr : FONT : "hp8x16" I WIDTH : 100 | LEFTJUSTIFIED;

label : make-obiect(pane, "dirlabel", Label, "Directory:"'

attr);

The following attribute merges a font descriftion with a

specified width and also tells the Edit object to restrict its

view to a single line.

attr : FONT : "hp8x16" I WIDTH :300 | SINGLELINE;

edit : make-obiect(pane, "dirValue", Edit,
gelcontexldirectoryO, attr) ;

Attributes are used to specify the appearance and be-

havior of user interface objects. The example above shows

their static use, that is, to specify the object's behavior

when first displayed. Attributes can be used dynamically

through the EDL built-in function add-attribute$. This allows

the appearance of an object to change during execution of

the encapsulation.

Message lnterface
The message interface is the programmatic access to a

tool's functionality. This interface is the connection to the

broadcast message server and allows tools to communicate

with one another, iust as a user would interact with a tool

through the user interface. The messages that a tool can

emit and receive define the tool's message protocol. The

HP SoftBench tools have a predefined message protocol.

When a user encapsulates a tool, a new message protocol

is defined. This protocol is cal led the tool closs.

To define a new tool class, one must decide what func-

tionality of the new tool should be accessible to other tools.

Most often this is the same functionality that is available

to the user via the user interface. Next, the developer must

decide how other tools are to be passed information specific

to each tool function. Typically, information that the user

interface receives by bringing up a dialog box can be re-

ceived in the message interface as the data fields of a mes-

sage.
There are several requirements that should be met for a

new tool class to become a "good citizen" HP SoftBench

tool. A notificotion message must be announced whenever

the tool successfully performs a function. Afoilure messoge

must be announced whenever the tool attempts to perform

a function, but does not successfully complete it. A request

message must be accepted for each function that the tool

is able to perform.
The message model allows tools to request other tools

to attempt to perform functions. Furthermore, because tools

send out notification or failure messages after attempting

to perform a function, a tool can determine the results of

such a request. Thus, tool interaction can be either synchro-

nous or asynchronous. For example, a tool may request

that an edit of a particular file be started, but may not care

whether the editor can actually perform the task. On the

other hand, if a tool requests that a file be checked out of

the version control system, it will need to know whether

that function can be performed before continuing with the

cunent operation.

JUNE 1990 HEWLETT-PACKARO .lOURr.ier 63

To facilitate handling arbitrary requests, the broadcast
message server defines a simple pattern matching facility.
This facility is accessible through the EDL built-in function
make-message+attern0. When message events are defined,
the message patterns will be passed to the broadcast mes-
sage server. These describe the forms of messages to be
forwarded to the HP Encapsulator.

The following example describes the message interface
for the simple tool class EXAMPLE.

/" Define the tool class '/

tooLclass("EXAMPLE") ;

These are variables used in the message interface.

string pattern;
event plan, estimate;

This describes the pLAN request message.

pattern : make_message_pattern(Request, NULL, "pLAN,,);
plan = make_event(Message, pattern, plan_request0);

This describes the ESTTMATE request message.

pattern : make_message_pattern(Request, NULL,,,ESTIMATE");
estimate : make_event(Message, pattern, estimate_request0);

Now we activate these events.

add-event(plan);
add_event(estimate);

These are the functions for the pLAN and ESTTMATE mes-
sages. The PLAN message takes two data parameters: the
name and the engineer-months. The ESTIMATE message
takes no data parameters.

function plan_requestfl

{
string name, months;

/* Extract and check the data parameters */

name : message_data(1);
months : message_data(2);

/- lf these aren't passed, then its an error ./

if (lname jl lmonth) protocot_erroO;

etse
/- Perform the PLAN request "/
if (plan(name, month))

/. Succeeded *i

send_message(Notify, NULL, "pLAN", name, months);
else

l- Failed'l
send_message(Failure, NULL, "PLAN", name, months);

)

f unction estimate_request0

{

64 rewrerr-pecxARD JoURNAL JUNE 1990

/* Perform the ESTIMATE request'/
il (estimate0)

/" Succeeded'/
send-message(Notity, NULL, "ESTIMATE");

etse
l- Failed'l
send_message(Failure, NULL, "ESTIMATE");

In this example, we have declared a tool class EXAMPLE
and registered two patterns with the broadcast message
server, each of which has a function to handle the request
when the corresponding message is forwarded to the Hp
Encapsulator. The functions check that each message has
the appropriate data and call other functions to attempt
the requested action. If the actions succeed, then a notifi-
cation message is sent to the broadcast message server.
Otherwise, a failure message is sent.

By knowing the message protocols of a tool, one can use
the HP Encapsulator to:
c' Create a tool that interacts with other HP SoftBench tools.
er Create a tool that drives other HP SoftBench tools.
,* Create a tool that replaces an existing tool (substitution).
q Create agents. Agents are tools that orchestrate other

tools to perform tasks.

Tool Triggers
A trigger is a cause-effect relationship between tools. In

the HP SoftBench environment, a trigger occuts when a
notification or failure message is sent from one tool and
one or more other tools respond to that notification by
taking some new action. For example, when a file is saved
from any tool, the HP SoftBench development manager
tool will update its directory listing, if needed. This is a
predefined trigger in the HP SoftBench environment.

The HP Encapsulator allows the user to define two types
of triggers; those that take action in a tool and those that
request some third tool to take an action. The HP SoftBench
development manager example above is a trigger that takes
action in a tool. The following code is an example of a
trigger that requests a third tool to take an action. It listens
for a notification message from the development manager
and asks the HP SoftBench program builder tool to attempt
a bui ld.

When we see aVERSION-UPDATE-D|R message notification,
send out a BUILD-TARGET request.

event trigger;
string pattern;

This pattern and event describe the message to be seen.

pattern : make_message_pattern(Notify, "DM",
..VEBSION-UPDATE-DI R'') ;

trigger : make_event(Message, pattern, requeslbuild0) ;
add-event(trigger);

This function requests that a build be started when an
update of the version directory is done in the development
manager.

HP Encapsulator CASE Case StudY

Frederick Brooks wrote: "Plan to throw one away; you will,
anyhow." The day before the U.S.A. announcement and dem-

onstration of the HP SoftBench environment, we threw away the
mail tool. Work began immediately to rewrite it almost completely,
using ideas we had learned from the previous effort. This time,
instead of writing an entirely new mail program, our approacn
was to use the HP Encapsulator to encapsulate the HP-UX mail
program mailx.

Why Anothel llailer?
There were several reasons for writing yet another mail pro-

gram:
r Provide a bridge from HP SoftBench messages to mail mes-

sages. When a particular HP SoftBench message is sent, a
software developer might want to send mail to notify the team,
the developer, or others. This would be especially true for
processes that run unattended or at night.

* lmprove the user interface. Most mailers that run under the X
Window System have a human interface best described as
nonideal. Some confuse new users with clutter, some require
a lot of customization, and some are hard to maintain in a

changing environment. HP SoftBench mail tries to provide a
better user interface.

',. Teach the HP Encapsulator language by a nontrivial example.
We wanted future developers to learn advanced techniques
by studying the code and its comments.

r Fine{une the HP Encapsulator. The new technology of the HP
Encapsulator needed to be used to get it ready for commercaal
use.

* lmorove the usefulness of the HP SoftBench environment
Studies show that technical users buy a computer to solve
important or costly problems like software development, not

function requeslbuild0

1

/* convert a wildcard for directory to a nil -/

string mfile : message-fileQ;
if (string-compare(mfile, "-")) mfile : "-"i l* Message

* server nil -/

/' Get the current context */

fiest : gelcontexLhost0;

dir : geLcontexldirectoryO ;

/' Now set the context Jrom the incoming message'/
selcontext(message-hostO, message-directory0, mfile);

/. Send the request to the BUILD tool class ./

send-message(Request, "BUlLD", "BUILD-TARGET", "- ' , -", "-");

I

The ability to define triggers allows the user to customize
the HP SoftBench environment to meet process-specific

needs. The following section describes the benefits of user-

definable triggers.

for office automation tasks like mail. Nevertheless, they expect
the manufacturer to provide a mail system.

Using the Encapsulatol
The Encapsulator descript ion language (EDL) is a new lan-

guage. A new language allows one to sail the seas of new higher-
level ideas. explore uncharted waters of new constructs, and
breeze past the rocks of low-level details so prominent in such
l ibraries as the X toolkit . However, new languages usually include

a new paradigm-a new way of thinking about the programming
problem. This is certainly true for EDL.

Encapsulat ing a complex tool l ike the HP-UX maih application
has i ts chal lenges, too. As we progressed on the rewrite, we
learned more about mailx that caused us to modify our design.
For instance, the code to manage folders was rewritten twice as
we learned subtle interactions in the way that maitx handles fold-
ers. Even though we did have access to the source files for mailx,
we looked at them only once-to discover that we couldn't find
the answer in the code! l t turned out to be much easier simply
to set up conditions, run mailx in a terminal window, and observe
its behavior. On the other hand, encapsulat ing an exist ing pro-
gram is code reuse at its best. Someone else had already solved
hard problems of mail del ivery, folder management, al ias crea-
tion, message presentation, and so forth. To paraphrase lsaac
Newton, HP SoftBench mail sees farther than its predecessors

because i t is standing on the shoulders of the giants that already
orovided oart of the solut ion.

Bob Desinger
Software Development Engineer

Software Engineering Systems Division

Process lntegration

One of the promising new areas in software engineering

environment research has to do with providing automated

support for the user's software development process. The

HP Encapsulator is one of the first products to provide a

language for describing local organizational, team, and per-

sonal processes. We refer to an EDL program that supports

a user's development process as a process specificotion,

and we refer to this type of environmental support as pro-

cess integrotion.

Process Specifications
While not all development processes are amenable to

being described with EDL process specifications, most can

have at least some aspects automated. In particular, activ-

ities and tasks that are essentially event-driven are prime

candidates for automated support.
The author of an EDL process specification tells the HP

SoftBench environment what to do when specific events

occur. There are two keys to the successful implementation

of EDL process specifications. First, the notification mes-

sage events must be announced so that the proper actions

can be triggered by the EDL process specification. All HP

SoftBench tools and all properly encapsulated tools issue

JUNE 1990 HEWLETT-PACKARo JouRNnr 65

these notification messages. Second, when a trigger in an
EDL process specification occurs, the resulting action
needs to be able to control other tools in the environment.
All HP SoftBench tools and all properly encapsulated tools
provide this by means of the message-based interface to
their functionality.

As an example of an EDL process specification, the fol-
lowing team process could be automated:
r Whenever a team member checks a file into the master

source file repository (directly or indirectly through the
development manager or a substituted configuration
management system supporting the DM versioning com_
mand class), with a state having the value Release, cause
complexity metrics to be calculated.

I If the complexity metrics for the file are not acceptable
as defined by the team, create a metrics report detailing
the unacceptable functions, and mail it to the user. Also
notify the user of the problem via a Warning notification
box.

r If the complexity metrics for that file are acceptable,
cause a tape archive to be created.

r When the tape archive has been successfully made, cause
a mail message to be sent to the project team announcing
a new release.
It is important to realize that each team member may

have slightly different versions of the above specification.
for very legit imate reasons. For example, a software quali ty
assurance engineer team member might want to take action
when a metric is found to be unacceptable.

Linking Events and Actions
Linking HP SoftBench Tools. Every action of every Hp
SoftBench tool provides the hook needed for that action
to act as a trigger for other actions. By default, certain
actions are predefined, such as the view synchronization
that causes tools to know when the files they are displaying
become out-of-date so that the user can be informed. With
the HP Encapsulator, the user can define additional triggers
for situations where actions need to be automatic. For
example:
I When a file is checked out, cause the editor to display

it automatically for editing.
r Cause a file to be checked in whenever it has been saved

from the editor.
I Cause a build to be initiated whenever a file is checked

in.
I Cause the debugger to reload automatically whenever a

build is successful.
r Cause the static analyzer to update its data base

whenever a build is successful.
Linking HP-UX Tools. The HP Encapsulator can be used
to encapsulate and link UNIX tools. For example:
r Encapsulate the tape archiver (tar) and cause tape back-

ups to be made whenever a release is built.
I Encapsulate the job scheduling commands (at or cron)

and cause builds to run at night.
r Encapsulate the source analysis program flintJ and cause

it to analyze a file automatically when it has been
checked into version control or saved from the editor.

r Encapsulate the source file printing programs (pr, tpJ and
cause listings to be printed whenever a project release

66 Hewrsfi-pncKARD JoURNAL JUNE 1 990

is made.
r Encapsulate the performance display programs (prof,

gprof) and cause the performance data to be displayed
after the program has been executed.

I Encapsulate the symbol searching program (nm) to iden-
tify libraries that must be added to the library list when
the linker finds symbols it cannot resolve.

I Encapsulate the control flow program (cflow) and cause
the output to be displayed whenever a file is checked
into version control.

Linking Local Tools. After visiting several large customer
installations and presenting the ideas and capabilities of
the HP Encapsulator, it became clear that an important
source of tools to encapsulate and processes to automate
would be local tools developed on site. Examples of some
of the more common encapsulat ions and pro"as specif ica-
tions are:
r Encapsulate local metrics collection tools and cause

them to process the files when they have been checked
into version control.

r Depending on the nature of the local project management
tools, cause them to do their processing whenever a re-
lease is made or when a file is checked in.

I Depending on the precise capabilities and structure of
the defect tracking mechanisms, cause the defect resolu-
tion component to prompt for its data whenever a new
local build is successful or whenever a file has been
checked out or in.

Linking Target Machines. When developing for a remote
target machine, there is typically a great deal of manual
intervention involved in transferring the application to the
target computer and building and testing it there. Assuming
there is some basic file transfer and remote job entry capa-
bility from the host to the target system, then using the
remote execution capability of the Hp SoftBench environ-
ment and the Encapsulator, the cross-development process
could be improved as follows:
I Whenever a file is checked into version control on the

development system, cause it to be copied automatically
to the remote target.

I When a build is requested, optionally cause it to execute
on the target computer (typically running make or any
local compile mechanisms, such as a batch job).

r Encapsulate the job control facility on the target system
and cause builds and tests to be run there, initiated from
the local system.

I Encapsulate any test scaffolding on the target system and
run tests of the application on the target system under
the control of the local development machine.

I Encapsulate any performance measurement facilities
available on the remote target and monitor performance
behavior remotely.

Linking Events with People. Perhaps the most important
form of link is the connection between people-individuals
and the team---and important events. The definition of an
important event likely varies as the development project
progresses. This is why the ability to change this definition
frequently and from user to user is an important capability
of the HP Encapsulator. Some typical triggers for coordinat-
ing teams are:
I Send mail to the project leader when files are checked

out.
I Send mail to the project team when a new version of a

common include file is checked in.
I Send mail to the project team when a successful system

build completes.
I Send mail to the project team when a system build fails.
r Send mail to the project team when a new release is

made.
r Send mail to the project team when weekly static

analysis data is available.
r Use encapsulated write(1) or talk(1) to initiate interactive

discussion of changes when an include file is checked in.
! Initiate an announcement tool (e.g., news or notes) to

inform the team of a new release.

Process Specifications in the Future
The examples given above show the types of process

specifications that can be designed to assist with software

development tasks and to link tools, computers, and

people.
EDL process specifications are among the most interest-

ing applications that exploit the HP SoftBench tool inte-

gration architecture. The technology is quite new. More

data needs to be gathered on the types of EDL process

specifications that users write and how much of their pro-

cess they wish and are able to automate.

Languages in general are difficult to design. Special-pur-

pose specification languages are often more difficult since

they are breaking new ground and trying to express new

ideas. EDL is a language used for specifying both tool en-

capsulations and process specifications. However, its de-

sign leans towards expressing those concepts necessary for

integrating a tool. In certain cases it feels awkward writing

a process specification with EDL. Language design for pro-

cess specification languages is a current research topic

being pursued at several university and industrial research

labs and ongoing progress in this area is sure to be seen.

HP Encapsulator ImPlementation

The Encapsulator description language is a special-pur-

pose specification language. It is implemented by means

of a compiler and an interpreter. The compiler is responsi-

ble for parsing an EDL input file and generating inter-

mediate code. The interpreter is responsible for the execu-

tion of that intermediate code. The HP Encapsulator is the

development environment for producing EDL code. The

HP SoftBench environment contains a portion of the HP

Encapsulator, which is the run-time environment for

executing compiled EDL code. This allows HP SoftBench

and the HP Encapsulator to be two separate products. Users

wishing to develop EDL code can do so with the HP Encap-

sulator and can deliver the production EDL code in binary

form to any HP SoftBench system.

Compiler
The compiler is responsible for generating intermediate

code from the user's source file or files. It does this in two
passes. The first pass is an invocation of the C preprocessor
over the EDL source file. This allows the programmer to
make use of C preprocessor constructs such as macros,
include fi les, and conditionally compiled code' The second

pass invokes a parser over the preprocessed source code.

The parser scans the input source code into tokens, recog-

nizes and stores symbols, and forms productions. Produc-

tions are groups of tokens that form an EDL statement.

When a production is formed, intermediate code can be

generated. The scanner and parser were produced from the

HP-UX tools lex and yacc, respectively' These tools accept

descriptions of tokens and grammars and generate the

source code for the scanner and parser components.

Symbols are identifiers such as variable names within

the source program, and are stored in the symbol toble.

The symbol table is used to record information about each

symbol, such as its type, value, printable name, and func-

tion address, and whether it represents a function. Because

there are often many symbols in an EDL program, a hashing

algorithm is used to make symbol lookup more efficient'

Intermediate code is generated by the compiler and

stored in the stotement toble. The statement table has three

components: the tog, the heod, and the toil. The tag iden-

tifies the current instruction or operator. The head and tail

refer to the left and right operands of the current instruc-

tion, respectively. The following is an example of the code

generated by the simple EDL statement, "assign the variable

X the value Y plus 10."

/* Here are the declarations of the integer variables. These
* two symbols are stored in the symboltable. No code is generated -/

integer X, Y;
/* Here's the assignment statement lor which code is generatecl
'(below)' i

X : Y + 1 0 :

Table I
lntermediate Code Stored in Statement Table

Tag Head Tail

(1) Symbol Symbol Index of x NULL pointer
(2) Symbol Symbol Index of Y NULL pointer
(3)IntegerConstant 10 NUlLpointer
(a) Plus Pointer to stmt 2 Pointer to stmt 3
(5) Assignment Pointer to stmt 1 Pointer to stmt 4

Table ll
ldentifier References Stored in Symbol Table

Name Type Value

Pointer to X
Pointer to Y

Integer 0
Integer 0

Function

None
None

Table I is the statement table representation of the inter-

mediate code generated from the assignment example. The

intermediate code organization and symbol table were

modeled after interpreters for lambda calculus languages.t

The variables referenced in this example have their symbol

table indexes stored in the symbol table, as shown in Table

II. These indexes are returned from the hashing algorithm

during parsing and allow fast variable value Iookup and

assignment during evaluation.

JUNE 1990 HEWLETT-PAcKARD JoURNAL 57

Interpreter
The interpreter is responsible for the execution of inter-

mediate code. The interpreter is refened to as a recursive
evaluator because it looks at the tag of a statement in the
statement table and then calls itself (recursively) to evaluate
both of its operands (the head and the tail). The result of
calling the evaluator is a typed value. That value can be
used as part of an expression or statement. Here is the
pseudocode for the evaluator:

/" Pseudocode for the recursive evaluator, called evalfl "/
procedure eval(statementpointer)

/- eval0 takes a single argument, a pointer to a new statement */

{
/* For each operator there is a particular section of
'evaluator code ./

switch (on tag of statement) {

case OPERATOBl:
/. Code specific to handling operatorl ... */

break;

case OPERATOR2:
/. Code specific to handling operator2 ...'l
break;

1- "nO
.o on for all operators .i

| /' End of operator specific handling code -/

/" Now return the result of the operation *i

return result;

)

Each case of the evaluator has code specific to executing
the specified operator. If that operator has operands, they
will be stored in the head and tail of the current statement.
In the example described above, the assignment operator
has two operands. The head is the left-hand side of the
assignment statement, which is the variable reference in
which to store the result of the assignment. The tail is the
right-hand side of the assignment statement, which is the
expression Y + 10, itself a separate operation in the state-
ment table.

Other Components
Other essential components of the HP Encapsulator im-

plementation include the broadcast message server, event
handler, and pattern matcher interfaces, the EDL built-in
functions, the compile-time and run-time stacks, and the
dump/load facility.

Of these components, the dump/load facility has the most
significant product implications. This facility allows the
developer to compile an EDL program into a binary format.
This has two effects. It makes the subsequent loading of
the EDL code much faster and it allows the HP Encapsulator
to have a run-only version. This run-only version is bun-
dled into the HP SoftBench product. Thus, an EDL de-
veloper can use the Encapsulator to implement an encap-
sulation program and can deliver that encapsulation to any

68 rewrErr pAoKARD JoURNAL JUNE 1990

HP SoftBench installation. The run-only version of the Hp
Encapsulator is implemented by removing the code mod-
ules that handle source code parsing, adding an inter-
mediate code relocation module, and restoring code from
a file into tables in memory that the HP Encapsulator can
interpret. The term relocation refers to the task of relocating
an address in the code file into an address in memory.

Acknowledgments
I would especially like to thank Martin Cagan for his

continued enthusiasm for an often controversial piece of
software. It was his early use, inspiration, and guidance
that helped create the HP Encapsulator. I would also like
to thank the development team-Elizabeth Carpenter, Hill-
ary Davidson, Gary Fritz, Nancy Kirkwood, and Lisa Rogers-
for helping make the HP Encapsulator a product. Special
thanks goes to the HP SoftBench mail team-Bob Desinger
and Nick Baer-for implementing the most advanced en-
capsulation we have to date and for contributing to the
success of the HP SoftBench product. Finally, thanks to
Bill Campbell for teaching me the beauty of interpreters
and to my wife, Cathy, for never tiring of the term "encap-
sulation."

Reference
1. A. Church, "The Calculi of Lambda-Conversion,,' Annois of
Mothemotico.l Studies, Vol. 6, Princeton University press, 1941.

lntroduction to Particle Beam LC/MS
Particle beam liquid chromatography I mass spectrometry
(LC I M S) y i el d s c/assica/, I i b r ary -s e arch ab I e e I ectro n i m p act
spectra for compounds that are too thermally labile or
nonvolatile to be analyzed by gas chromatographylmass
spectrometry (GCIMS).

by James A. Apffel, Jr. and Robert G. Nordman

MASS SPECTROMETER (MS) is an analytical instru-
ment that is used to measure the molecular weights
and chemical structures of molecules introduced

into it. Samples are first ionized, and then the charged

fragments are separated and analyzed according to their

mass-to-charge ratios. HP makes quadrupole mass spec-

trometers, which accomplish this separation using a quad-

rupolar electrostatic field.
The ionization method determines the nature of the frag-

mentation of the molecules. So-called soft ionization

causes less fragmentation and hard ionization causes more.

Electron impact (EI) ionization, a hard ionization technique,

has evolved as the most useful technique, especially for

getting information on the structure of the molecule. When

the electron energy is controlled, the resultant fragmenta-

tion is extensive, thus elucidating the structure of the

molecule. The process is also quite reproducible' The mass

spectra that result can be compared to spectra stored in a

library and thus used to identify the compound being

analyzed.
Chemical ionization (CIl is a softer ionization technique

than EL It is often used when EI fragments the molecule

to the point where little or no unfragmented molecules are

left and thus the analysis will not yield the molecular

weight of the compound. CI spectra do not contain suffi-

cient fragmentation information to be library-searchable'

In addition to identification, mass spectrometers are also

used for quantitation down to very small concentrations-
parts per million and sometimes parts per billion.

Many samples of interest are not single compounds but

are mixtures of compounds. Examples are metabolytes in

a biological sample or the seepage from a toxic waste dump.

Before the mass spectrometer can do its iob, the sample

must be separated into individual compounds. This separa-

tion is accomplished using a gas chromatograph (GC) or a

liquid chromatograph (LC). Both types of instruments are

produced by HP. In a gas chromatograph the sample is first
vaporized and then separated into its components as they
are carried by a gas stream. This gas stream can then be

introduced directly into the mass spectrometer and each
compound in the mixture analyzed as it enters. This com-
bined technique is known as GC/MS.

Many compounds are not volatile enough to be readily
changed into the gaseous state without decomposing. With
mixtures containing these relatively involatile and ther-
mally labile compounds an LC is usually the separation
instrument. In an LC the compound mixture is dissolved
in a suitable solvent such as water or methanol and then
separated into the individual compounds.

A problem is that this liquid stream cannot be introduced
at normal LC flow rates directly into the mass spectrometer
without overloading the vacuum system. Even if this were

not a problem, the liquid would have to be evaporated and
the solvent pumped away before the ionization would be
possible. Various techniques have been tried over the years

to solve this dilemma. With the moving belt interface,l the
liquid is deposited on a moving belt, which canies it

through a desolvation stage and finally into the mass spec-

trometer. With the direct liquid introduction interface,2 a
portion of the LC flow is nebulized directly into the mass
spectrometer. While the moving belt interface can be used

in a variety of ionization modes which generate a range of
analytical information, mechanical and thermal limitations
make operation difficult and problematic for compounds

of limited volatility or stability. Although direct liquid in-

troduction shows improved capability with respect to ther-
mally labile compounds, the technique generates only

chemical ionization spectra with the reagent gas limited
to HPLC (high-performance liquid chromatography) mobile
phase components. HP has made a direct liquid introduc-
tion product in the past.

None of these earlier techniques has earned liquid chro-

HP 5988A Mass Spectrometer

Fig. 1. For particle beam liquid chromatographylmass spectrometry (LCIMS), a special inter-
face is mounted between the LC and MS systems. The data system can be either an HP
59970C ChemStation for single-instrument operation or an HP 1000 computer system for mul-

tiinstrument, multitasking, multiuser operation.

JUNE 1 990 HEWLETT-PAoKARD JoURNAL 69

matography/mass spectrometry (LC/\4S) the relatively
broad and routine use now enjoyed by GC/\4S. More re-
cently, thermospray LC/\4S3 has been introduced and is
gaining in use. This interface requires the use of an addi-
tional chemical in the liquid stream which, when the liquid
is nebulized in a thermal nebulizer, causes charged droplets
to be formed which eventually become ions. A portion of
this stream is then sampled by the mass spectrometer. HP
now offers thermospray LCA4S as an option on the HP
59BBA Mass Spectrometer. This technique significantly im-
proves both ease of use and the ability to analyze thermally
unstable or nonvolatile compounds, but spectral informa-
tion is still limited to CI spectra. Furthermore, thermospray
also suffers from problems with quantitative performance
and analytical predictability. The combination of thermo-
spray LC/Ir4S and tandem mass spectrometry, or MS/MS,
offers improvements in the generation of structural informa-
tion, but MSA,{S is costly and the spectra lack sufficient
reproducibility to be used in computer-based spectral li-
braries.

Particle Beam LC/MS
Particle beam LC/MS is a new approach to interfacing

high-performance liquid chromatography and mass spec-
trometry. It yields classical, library-searchable electron im-
pact (EI) spectra for compounds that are too thermally labile
or nonvolatile to be analyzed by GC,4r4S. Particle beam
LCA{S can also be used in chemical ionization (CI) mode

with free choice of reagent gases. This versatility, in com-
bination with ease of use and good quantitative perfor-
mance, means that particle beam LC/MS is a viable alterna-
tive, or in some cases a complement, to existing LCA,{S
interfaces. Although particle beam LC/]vIS is a relatively
new technique, it has great potential because it satisfies
the two major trends in LC/lvIS development described
above: it is applicable to a wide range of compounds with
low volatility or thermal stability and it generates high-in-
formation-content EI spectra.

Hewlett-Packard's system for particle beam LCAvIS is
shown in Fig. 1. I t uses exist ing HP LC, MS, and data
systems and a special particle beam interface mounted be-
tween the LC and the MS.

The HP part icle beam interface is based on the init ial
development of MAGIC LC/MS (Monodispersed Aerosol
Generation Interface Combining LC and MS) by Browner
and others.a Signif icant design improvements have been
made in performance, ease of use, and robustness.

Principle of Operation
A schematic of the particle beam LCA4S system is shown

in Fig. 2. A pneumatic nebulizer generates an aerosol from
the HPLC effluent. As the aerosol passes through a desol-
vation chamber, the volatile components (such as HPLC
mobile phase) are vaporized, leaving less volat i le compo-
nents (such as analytes) as submicrometer particles. This
mixture of vapor and particles enters a two-stage momen-

Fused Silica
Lc Effluent tntet caPillarY

or t. i''u,'i"- 3.? ilfr i;1
':.

'
oriti""

Helium Gas Inlet 0.4 mm i.d.
1 to 2 l/min

Stage 1

Skimmer 1

Stage 2

To MS

Skimmer 2

MS System

<2x10-s torr

200 to 300'C

Stage 1 Pumpout
Edwards E2M18

Desolvation chamber Momentum
Separator

Nebulizer

Pressure <20 bar
(Back Pressure)

Temperatilre Ambient

Stage 2 Pumpout
Edwards E2M18

200 torr

35 to 45"C

51 < 10 torr
52 < 0,5 torr

Cl Reagent Gas Inlet

Transfer Tube

<2x10-s torr

lon
Source

70 HEWLETT-PAoKARD JoURNAL JUNE i990

Fig.2. Diagram of the HP particle beam interface for LCIMS.

tum separator in which the relatively low-momentum

vapor molecules are pumped away while the higher-

momentum particles continue into the source of the mass

spectrometer, where they are vaporized, ionized, and fi-

nally mass analyzed.
The nebulizer, which is pictured in Fig' 3, consists of a

simple coaxial pneumatic nebulizer. The HPLC effluent

passes through the fused silica capillary running down the

center of the nebulizer while the helium nebulization gas

flows around the capillary and forms the aerosol at the

exit. The HPLC effluent can be any commonly used HPLC

mobile phase, such as water, methanol, acetonitrile,

hexane, or chloroform. The single restriction on the mobile

phase is that if a mobile phase buffer is necessary, the

buffer must be volatile. HPLC flow rates between 0.1 and

1.0 ml/min are acceptable. Typical helium flows are be-

tween 1 and 2 l/min. The nebulizer has a replaceable Z-pm

filter to prevent clogging of the fused silica capillary' How-

ever, since the capillary internal diameter is 100 pcm, the

in-line filter is merely a precaution.

The desolvation chamber is a hollow cylindrical section

between the nebulizer and the momentum separator. The

purpose of the desolvation chamber is to allow sufficient

time and travel space for effective thermal transfer-via

the carrier gas-from the desolvation chamber walls to the

aerosol droplets to evaporate the solvent. The desolvation

chamber is maintained at approximately 200 torr and 45'C.

Although earlier attempts in similar interfaces used lower

pressures at this stage, the relatively high pressure is neces-

sary for the helium gas to maintain thermal transfer be-

tween the desolvation chamber wall and the solvent drop-

lets. The desolvation chamber is thermostatically con-

trolled to replace the heat that is absorbed as the solvent

droplets evaporate.

The momentum separator consists of three main parts:

a nozzle and two skimmers' The nozzle funnels the flow

of the vapor particle mixture, creating a supersonic jet ex-

pansion (and consequently the particle beam). In a super-

sonic jet expansion, the fluid flow exits from the nozzle at

supersonic velocity. At a specific distance from the nozzle

orifice, a region known as the mach disk exists, where the

flow makes a transition from supersonic to subsonic veloc-

ity. The first skimmer orifice is placed just inside the mach

disk so that the central particle beam is efficiently trans-

Desolvation Chambel

mitted while allowing the vapor molecules to be pumped
away. Similarly, the second skimmer removes more of the
vapor while transferring a high proportion of the analyte
particles. The ultimate result of this two-stage process is a
pressure reduction from 200 torr in the desolvation
chamber to approximately 5 torr in the space between the
nozzle and the first skimmer, then to 0.2 torr in the space
between the two skimmers, and finally to 2 x 10 s torr in

the mass spectrometer source manifold.
After exiting the momentum separator, the particle beam

passes through a transfer tube into the mass spectrometer
ion source. The particles strike the inner walls of the source
body (which are held at approximately 250"C) and are va-
porized. The vapor phase molecules thus generated can be
ionized by either electron impact or chemical ionization.

Performance Optimization
One of the most important features of the particle beam

LC/MS system is its ease of use' In most cases, optimization
of performance can be accomplished by a single adjust-
ment, the nebulizer. It is also possible to adjust several
other operating parameters, such as desolvation chamber
temperature, helium flow rate, and source temperature, but

default values for these parameters usually work well. All
of these parameters are mobile phase dependent except for
the MS source temperature, which is compound depen-
dent.

A knob on the back of the nebulizer can be turned to
adjust the axial position of the fused silica capillary in the
nebulizer body. Since the optimal position is mobile phase

dependent, the position must be adjusted when running
different mobile phases. For gradient elution, a com-
promise position is chosen.

Fig. 4 shows the signal intensity for 10-ng injections of
caffeine as a function of nebulizer position and mobile
phase. Although the exact shape of this surface will change
for different fused silica capillary tips, the two-maxima
shape is typical, the minimum being at a point where the
fused silica capillary tip is almost flush with the nebulizer
orifice. Note that when higher proportions of water are
used in the mobile phase, there is a loss of signal. This

Fig. 4. Slgna/ intensity for 1}-ng iniections of caffeine as a

function of nebulizer position and mobile phase.

LC Efiluent
lnlet ' . .

Capillary

Helium lnlet - 5 - 3 - 1 1 3 5 7 9 1 1 1
Posilioni l l

Fig. 3. Nebulizer detail

JUNE 1990 HEWLETT-PACKABD JoURNAL 71

Optimal Temperature

60 56 52 48 44 40 36 32 28
femperature ('C)

Fig. 5. Ellects on sensitivity of desolvation chamber temper-
. t t t f a 2 n . l m ^ h ; l o ^ h ^ r ^ ^ ^ h ^ ^ ^ ; t ; ^ ^t t t v u ' r a P u a J a v u r t t P U J t L t v r t .

trend is seen with other reversed-phase solvents as well,
such as water/acetonitrile and water/THF mixtures. If the
nebulizer is adjusted properly, the loss of signal is approx-
imately 50%. In the case of normal-phase solvents, such
as hexane and chloroform, this signal loss is not seen.

Although the desolvation chamber temperature can have
a significant effect on sensitivity, it is generally unneces-
sary to adjust i t , since a temperature of +S'C is near optimal
for most mobile phases. The effects on sensitivity of desol-
vation chamber temperature and mobile phase composition
are shown in Fig. 5. Again, higher proportions of water
show poorer sensitivity than pure organic solvents. In cases
where high proportions of water are used exclusively (iso-
craticl, it is sometimes advantageous to raise the desolva-
tion chamber to 50"C.

The helium nebulization gas flow rate also has an effect
on sensitivity for high aqueous mobile phases. In most
cases, a f low of 2 l /min (approximately 40 psi inlet pressure)
is optimal, but when using high organic mobile phases, it
is possible to reduce the f low to 1.S l /min. The effects on
sensitivity of mobile phase characteristics and helium flow
rate are shown in Fig. 6.

Operation of the particle beam LCA4S system has been
optimized for l iquid inlet f lows of 0.S ml/min or less. Al-
though flows as high as 1 ml/min can be used, there is a
Ioss of sensitivity at higher flows as illustrated in Fig. 7.
Below approximately 0.5 ml/min, the response plateaus at
a maximum level. This trend is true for both high aqueous

and high organic solvents. In practice, the need to use a
flow rate of approximately 0.5 ml/min or less for maximum
performance is not a limitation since this is the ideal flow
range for 2-mm i.d. columns. These columns can be used
with conventional HPLC equipment as a simple alternative
to more conventional 4.6-mm i.d. columns while offering
the addit ional advantages of reduced solvent consumption
(approximately f ivefold), reduced packing consumption for
exotic stat ionary phases, and increased mass sensit ivi ty
when used with concentration dependent detectors such
as UV. Columns are commercial ly avai lable with a wide
range of select ivi t ies and eff iciencies comparable to 4.6-mm
i .d . co lumns.

Final ly, the mass spectrometer source temperature plays
an important role in part icle beam LC,MS spectral qual i ty.
If the source temperature is too high, significant thermal
degradation may occur. Actual ly, this effect is similar to
that seen for all MS operation modes. The effect of temper-
ature depends upon the thermal stability of the analyte.
Caffeine, for example, shows very little change in either
signal intensity or spectral characteristics over a wide tem-
perature range (150 to 350"C), while some cort icosteroids
show a very strong effect. Typically, signal intensity and
thermal degradation increase with increasing source tem-
perature. Thermal degradation is evidenced by a decrease
in the rat io of higher-mass ions to lower-mass ions.

Quantitative Performance
Because of its relatively recent introduction, particle

beam LC/MS has not been fully characterized. In particular,
the quantitative performance has been evaluated in depth
for only a small number of compounds. In addit ion to
studies already under way, however, user-generated results
will quickly help to clarify this area in the near future.
This section summarizes the performance to date.

Response factors for particle beam LC/MS are not totally
uniform. As a result, different compounds exhibit a range
of detection limits. This is illustrated by the histogram
shown in Fig. B. The data in this plot shows the minimum
detectable quantities (MDQs) for g2 pesticides in nano-
grams. The tests were run on an HP 5SBBA mass specuom-
eter in flow injection analysis (plug injections) and calcu-
Iated as the amount required to generate a signal to peak-to-
peak noise ratio (S/N) of 2 using total ion current (TIC) in
ful l-scan (scan width of 50 amu to the molecular weight

100

=
.E,so
U'

0

100

.6 so
o

0
o.4 0 .6 0 .8 1 1 .2 1 .4 1 .6 1 .8 2

Hetium Ftow (t/min)

Fig. 6. Elfects on sensitivity of mobile phase composition
and helium flow rate.

72 Hewrefi pACKARD JOURNAL JUNE r99o

100

60 or
s"

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Flow Rate (ml/mn)

Fig. 7. Effects on sensitivity of mobile phase flow rate and
composition.

+ 50 amu) data acquisition. It can be seen from this data

that 50% of the compounds tested show detection limits

below 25 ng. As a rule of thumb, 100 ng of most compounds

will generite useful mass spectra' There -are compounds

that ferform especially poorly in EI, such- as glyphosine

MDa : oas ng) and compounds that perform especially

well. such as diuron (lvfDQ : 2 ng)' Although tests for the

MDQs of these pesticides had not been run on the newer

HP 59BgA mass spectrometer at the time this paper was

written, the results are expected to improve by about a

factor of five when using the newer instrument' It should

be noted that while the response factors do show some

variation, the range is less than that seen for thermospray

on similar comPounds,
The linearity of particle beam LC/MS is relatively inde-

pendent of sample characteristics' Although the calibration

"rrrrr"
is tit welt with a standard linear function (r2 :

0.9995), there appears to be a reproducible deviation from

lineariiy at lower levels. This can be seen in Fig' 9, which

is a calibration curve for caffeine' The data shown is from

selected ion monitoring for a mass-to-charge ratio (m/z) of

19a. (The molecular weight of caffeine is 194')

The reproducibility of particle beam LC/MS is excellent'

Typically, full-scan EI TIC data shows relative standard

deniations (RSD) of 10% or less, while extracted ion cur-

rents or selected ion monitoring data shows RSDs of 5%

Io 7lo, depending on the concentration level' This repro-

ducibilityis partially the result of noise characteristics that

are relatively independent of HPLC flow pulsations, yield-

ing smooth spike-free chromatograms'

Applications
Particle beam LC/\4S has potential utility in solving

varied analytical problems. From the confirmation of iden-

tity and quantitative analysis of environmental contamin-

anis to stiucture elucidation of pharmaceutical and biosci-

ence related samples, the capability of generating EI or CI

spectra from previously unapproachable compounds opens

a number of exciting possibilities.
One of the application areas of greatest potential for par-

ticle beam LCA{S is the analysis of samples of environmen-

0 200 400 600 800
Minimum Detectable Quantity (ng)

Fig.8, Minimum detectabte quantities for 92 pesticides for

a signal-to-noise ratio of 2 in full-scan data acquisition'

tal interest. Particle beam LC/lvIS solves two critical prob-

lems in this area. First, it allows samples to be analyzed

that cannot be analyzed by GCAvIS. In a recent study of a

California site,s it was determined that only 10% of the

total organic halogen (TOX) could be accounted for using

conventional analytical methods. This brings up the

frightening question, "What potential health hazards are

*J"*pot"d io but unable to monitor because of analytical

limitaiions?" Particle beam LCAvIS may allow us to expand

the range of compounds that we are able to examine' Sec-

ond, because of the legal and economic ramifications of

environmental monitoring, it is critical that the identifica-

tion of environmental contaminants be unequivocal' In

many cases, the CI spectra provided by thermospray or

other LCAvIS techniques simply lack sufficient information

content to make these identifications. The EI spectra pro-

vided by particle beam LCAvIS, on the other hand, are gen-

erally speiific enough to be a source of positive identifica-

tion.
In 1987, approximately 150 compounds were removed

from the U.S.A. Environmental Protection agency's Appen-

dix VIII to form Appendix IX, for the most part because of

insufficient analytical methodology' Fig' 10 shows the sep-

aration of some of those compounds. Note the excellent

chromatographic resolution and fidelity' Of the com-

pounds shown, the spectra of all but one (amitrole) were

iound in the Wiley/NBS spectral library and were, in fact,

the first choice identified by probability-based matching

(PBM) using a computer-based library search in spite of

the fact that none of them is amenable to GCnvIS separation'

Many of the spectra found in the Wiley/NBS spectral library

were generated by direct insertion probe (DIP)'*

A similar environmental application, the analysis of

triazine pesticides, is shown in Fig. 11' Although some of

the triazine pesticides can be separated using GC, HPLC is

the separation method of choice because of its simplicity
tDirect insertion probe is a technique whereby a small amount of the malerial rs analyzed

by placing it on a heated probe' which is inserted directly into the mass spectromeler ion

s o u r c e ' | l t h e m a t e r i a | c a n b e V a p o r i z e d w i t h o u t d e c o m p o s l n g , m a s s s p e c t r a c a n b e
obtained.

Amount Iniected (ng)

Fig. g. Particte beam LCIMS linearity. The solid line is the

linLar regression line. The inner dashed lines are the 95%

confidence limits and the outer dashed lines are the 98%

confidence limits.

1 6

o

3 t z
C'
o

L

JUNE'1990 HEWLETT-PAoKARo lounnnr 73

=
a
z

C
ft
o
-
o

c-
a
I

z
r

tr
l

a
I

;
I

I

z

g
o

a d

B d

6 <

> I
I F

- - 3

| . o z . a

F ;

and the on-line sample handling characteristics of auto-
mated HPLC. Using a very simple valving configuration,
it is possible to preconcentrate relatively large volumes of
environmental samples automatically. The spectra shown
on the left in Fig. lL are extracted from a peak in the total
ion chromatogram that appears to be a single homogeneous
peak but is, in fact, two nearly coeluting components.
Through selected ion profiles, it is possible to separate and
quantify these two compounds.

Fig. 1,2 shows an example of a sample of pharmaceutical
interest, the separation of corticosteroids. As mentioned

above, corticosteroids show a strong temperature depen-
dence. Although signal intensity can be enhanced by using
a higher source temperature, this results in increased ther-
mal degradation. The chromatogram shown represents 100
ng per component at 2S0'C.

Another example of a life-science application is the sep-
aration of af latoxins 81, BZ, G1, and G2, as shown in Fig.
13. Through the use of selected ion monitoring, it is possi-
ble to detect and confirm the presence of these compounds
at relatively low levels.

Finally, the analysis of monosaccharides and disac-

Fig. 10. Separation of compounds
i n U.S. A. E nv i ronmental P rotection
Agency Appendix lX by particle
beam LCIMS. The left side shows
the total ion current (the chromato-
graphic signal) out of the mass
spectrometer. The right side shows
the spectral data out of the mass
spectometer.

Fig. 11. Analysis of triazine pes-
ticides by particle beam LC|MS.

pB LC/i\,tS
tzl' \ . f , . . (

I L ' a - . t' r T r{ '' 't'h'{'i{{'i' l*,
l l l I

I LTBRAR'
I

PB LC/MS

s 6

l r a
t I i
ti{ -'t 1i ir rir l

L]BRARY

r
L
J

Cyprazine

9 3

"\ l
r ii[,+.i
f l l l l r l
l , " l

'/u

I
1T"1'''
I
I

> - 4
N ; 4

E t
- > !e < x

74 rewrerr-pncKARD JoURNAL JUNE 1990

l 5 s 2 S A

z
c

O
o

z
o

-

z
z
O(

O
o

: . 2

T d cI d c
! o o
r o o

r o ?

l q o

l : +

o ,
; l

o

o
o

PROGESTERONE

PB LC/N,4S

2?s 2<2
i \ 3 1 .

, / - | | \ . - "
* l * ,$* ' i t . " l ' t f
' l l

charides using ammonia chemical ionization particle beam

LCA4S is shown in Fig. 14. This application provides a

means of performing group-type separations since all pen-

tose monosaccharides, hexose monosaccharides' and

homogeneous and mixed disaccharides yield group-spe-

cific s-pectra. Note that the detection limits are well below

those obtainable with conventional HPLC and refractive

index detection.

Conclusion
Particle beam LC,MS offers an exciting new approach to

. I o ^ 2 6 6 . 4 O 6 u . l . o i

interfacing LC and MS. Its EI capability, excellent quantita-

tive perfoimance, and ease of use promise to make it the

new standard for routine LC/MS operation' It should be

noted that, like any technique, particle beam LC/MS does

have its limitations, and there are samples that will be

better approached using other techniques such as thermo-

spray tCltt'tS. Furthermore, particle beam LC/lr4S is a rela-

tive\ new technique and is not totally mature' There are

a number of areas that remain to be understood and charac-

terized. Hewlett-Packard's goal in implementing particle

beam LC,MS is to provide a tool for solving analytical prob-

Fig. 12. Separation of cortico-
steroids bv particle beam LCIMS.

Fig. 13. Se7aration of aflatoxins
by particle beam LCIMS

JUNE 1990 HEWLETT'PAoKARo ..louRltnl 75

r666

ea66

aaaa

a66A

2646

l@64

66ga

5060

1664

26Ba

SIil AFLATOXINS

AFLATOXINS G2

I o . z s a . 6 0 . 6 u ' f t o 6 D F T F T F F B S Z 2 . D

AFLATOXINS G1

I o F 3 1 2 . s O . i u . l . o i D F F T F F B S / z

I o a 3 l a . O S . i v . f . o n D F T F T F F B S / Z _ O

r . (l 2 a : t 3 g - l l l r l l ?) 6 v g a . 9 9 5 r ' . 2 4 3 t r ' '
l@et f..-
s@l AFLAIoxtNS c2 I a'e6

lffil 1s."" 1oo ng'comPensnll
I

s@sl ,
!6osl 2.3 |t @ 1) - i
3s0ol a ll
aaof zat .e" | ,

' i ' l l l
' "*"1 (. , , , .r ' . . , , .L.. ", [. . .1., , , ,1.. ' , ' l l l . ' ' .

h . (l a ! : l ! l - l 3 a t l a l) F v g a . T d r a _ 6 O 9 i l h
166o0l N
smal 461 ATOXTNS G. | . i .
.@81
7ss61
Eso6l I
.6ooi I
<saa1 zr3
z o o e f \ l . a l l
zoeol i, ll | | 272 |
, @ 6 1 L ' l l l l t l l t l , , i r r , l i l

s l l I nL r l l l r r ru n rr l r . r

^ . (1 6 5 : l 7 l - l 1 6 r 1 6 6) R w ! 5 . 3 5 4 : ! ' S S ' i r n
laOAEl
seee l AFLATOXINS 82
€06oi

"@o16@A1
:emi '/ '
.@s1 I zes
acgi:EZ1 ,", zzs 'i I a'"':1 '1,.'.",. ' 1."'r , ' l 't ,"1 ' h. '

^ . (1 9 ? : 2 4 3 - t S 5 : l S l) A v g 6 . 3 6 : 6 ' ' 9 6 ' t h

LO@91

-ll
(l

3_r3 i I, . . t r r I""";"^'l
","4 I
. l , I
f m , E F T F T A F / 3 . D |

l"i
,i'"- *,.,",,"."
1"

lgggo

e6ao

60BS

a60g

2064

as60

6AA6

1966

2806

1o666

6660

6566

1068

2600

l @ g 6 a

AFLATOXINS B1

a66 2a6 Za6 2A6 3Sg azg aao

Fig. 14. Analysis of monosac-
charides and disaccharides by
ammonia chemical ionization Dar-
ticle beam LCIMS.

lems. As experience accumulates, strengths and limitations
of the technique will become more clearlv defined.

Afterword
As this article was going to press, the Hp 59894 mass

spectrometer was introduced, along with a new particle
beam interface. The data in this article was acquired using
the older HP 59BBA system. Data taken to date on the newer
HP 59BgA system indicates an improvement in sensitivity
on the order of five to one over the Hp 59BBA. This improve_
ment is compound dependent.

Acknowledgments
The authors wish to thank Rune Brandt and Mirko Mar_

tich for their outstanding contributions to the design of the
instrument, Laura Cerruti for her diligent running of test
samples, fean-Luc Truche for his gentle and knowledgeable
leadership, lohn Michnowicz who recognized from the
start the power of the technique, Dave Gunn and Ernie
Strehlow for modelmaking bordering on magic, and all the
people at the HP Scientific Instruments Division who
worked so hard to make this product a success.

References
1. D.E. Games, "Combined High-performance Liquid Chromatog_
raphy and Mass Spectrometry," Biomedico.l Moss Spectrometry,
Vol . 8, no. 9, 1981, pp.454-462.
2. J.B. Crowther, T.R. Covey, D. Sivestre, and f.D. Henion, ,,Direct

Liquid Introduct ion LC/MS," LC Magozine, Vol . 3, no. 3, 1Sg5,
pp .240 -254 .
3. C.R. Blakely and M.L. Vestal, ,,Thermospray

Interface for Liquid
Chromatography/Mass Spectrometry,,' AnolyticolChemistry, Vol.
55 , 1984 , pp .750 -754 .
4. R.C. Willoughby and R.F. Browner, .,Monodispersed

Aerosol
Generation Interface for Combining Liquid Chromatography with
Mass Spectrometry," Anolyt icol Chemistry, Vol . 50, 1984, pp.
2626-2631,.
5. M. Brown and R.D. Stephens, ,,Non-Conventional pollutants
in Ground Water as Characterized by LC/MS,,' proceedings of the
EPA Symposium on Woste Testing ond euolity Assuronce, 1988,
G-28.

t . 3 4 F : | . . . ! D F T F r S U C S C R N T

R BOSE

)" z'-
. f r o a D F T F ' S U G S C F N t .

ARABINOSE

. f . o h D R T F ' S U G S C A N I .

FRUCTOSE

. f . 6 h D F T F T S U G S C F N I . E

GLUCOSE

i: '1. T',

3 5 S

.t

2 a 6

N,4AtIOSE

292 ,r ,)"
. ! / /
, r h . r r o i D F T F T S U G S C F N !

LACTOSE

76 newrerr-pecxARD JoURNAL JUNE 1990

Advances in lC Testing: The Membrane
Probe Card
Conventional integrated circuit wafer test probes have
mechanical and electrical weaknesses, especially for

testing high-frequency or high-speed devices and chips
that have large numbers of inputs and outputs. Membrane
probe technology overcomes most of these limitations.

by Farid Matta

AFER TEST TERMINOLOGY and practices vary

between IC manufacturers. However, most test
procedures fall into one of two general categories:

parametric testing and die-sort testing'

Parametric testing is intended to check basic device data

such as threshold voltages and sheet resistances' It is per-

formed on special patterns, known as test chips, included

on the wafers. For a given wafer or wafer lot, passing the

parametric test is a necessary but not sufficient condition

for yield.
Die-sort testing is performed on all individual chips to

sort out the good from the bad. It is normally designed as

a sequence of increasingly complex routines so that gross

failuies are detected early and test time is not wasted on

useless chips.Ideally, die sorting culminates in an at-speed

test that exercises the chips at a frequency at least as high

as the intended application. This way, the manufacturer

ascertains that the parts will perform to specifications be-

fore more resources are spent on their packaging'

The hardware involved in either of the above processes

typically consists of an electronic tester, which executes

tirl test program, a prober, which performs the mechanical

manipulation of the wafers, and a probe card, which pro-

vides the electromechanical interface between the tester

and the device under test (DUT)' Usually, the probe card

is connected to the tester via a printed circuit board known

as the probe-card motherboard or the performance board,

which is customized for individual ICs or IC families'

The test software is the multitude of programs that con-

trol the electronic tester, commanding it to apply to the

inputs of the DUT specific combinations of voltages and

currents (known as test vectors), and to measure certain

voltages, currents, and time intervals at the outputs of the

chip. The measured responses are then compared with pre-

detlrmined allowed ranges, and accepted or rejected ac-

cordingly.

Testing High-Performance Devices
Wafer test requirements vary with a number of factors'

For example, certain specifics are dictated by the technol-

ogy (bipolar, MOS, GaAs), by functional i ty (logic, memory,

linear), by the nature of the signal (digital, analog, mixed-

signal), and by other factors. In any of these categories,

there are typically a majority of low-to-moderate-perfor-

mance products and a smaller number of high-performance

o.r"r. Thu definition of what constitutes a high-perfor-

mance IC may not always be clear' However, at least for

wafer testing, two categories of chips pose known chal-

lenges: devices with high input/output (I/O) counts and ICs

designed to operate at high frequencies or high switching

speeds.
Despite the fact that the probe card is the smallest and

least expensive component of the test setup, it is usually

the main cause of the difficulties experienced in testing

high-performance devices. Specifically, when the number

of"contact pads on the chip is greater than about 150, and/or

when the contact pads are spaced particularly closely' it

is difficult or impossible to procure conventional probe

cards that will work reliably in factory conditions' AIso'

when the operating frequency or switching speed is high'

the probe card's parasitic effects can distort the test condi-

tions as well as the measurement results'

Distortions resulting from probe-card parasitic effects

can occur when either of the following conditions is pres-

ent:
r The wavelength of the highest significant frequency is

of the same order as the linear dimensions of the probe'

When this is true, at any given instant the voltages and

currents at different points of the probe can be substan-

tially different. In this case the probe represents a trans-

mission line section, in which such phenomena as signal

reflections can become dominant.

I Parasitic reactances in the probes are sufficiently high

to redistribute the circuit voltages and currents' In digital

Ground Plane

Lp

O-rrrn--rrrn--O

T
V

(b)

(a) Structure. (b) Equiva

z"

Fig. 1. Conventional wafer Probe
lent circuit.

(a)

JUNE 1990 HEWLETT-PAcKARD JoUBNAL 77

situations the same criterion is formulated differentlv:
namely, one is faced with a high-speed testing situation
when the DUT su'itches faster than the time constant of
the circuit coniriining the parasitic reactance.
Chip makers sometimes circumvent the difficulty of ob_

taining high-pin-count probe cards by using self_test, so
that only a subset of the pads needs to be accessed. How_
ever, this approach imposes a penalty in wafer,,real estate,,
and results in incomplete test coverage. No way to circum-
vent the signal integrity problem has yet been found.

Failure to perform at-speed testing at the wafer level
leads to the wasteful packaging and retesting of a certain
volume of bad chips that could have been identified and
rejected earlier. Depending on the complexity of the part
and on the signal frequencies involved, that fraction ian
be as high as 10% of the total. The financial impact depends
on the incremental packaging and testing cost. To illustrate
the magnitude of the problem, consider the following con_
ditions, which are not unusual for a high-performance IC:

Annual production volume: 100,000 chips
Fraction of rejects at packaged test: 10%
Cost of packaging per chip: g100
Cost of final test per chip: g2
Total waste per year: 91,020,000.

Hence, the availability of at-speed testing capability at
the wafer level is of pressing importance to the IC industrv.
and the main element of that objective is the developme;t
of an IC probe card capable of addressing a large numbe.
of inputs and outputs and of maintaining signal integrity
for a wide range of frequencies and operating speeds. TL
develop such a technology, it is necessary to identify and
formulate the problems preventing conventional probe
cards from delivering the needed prformance.

Conventional Probe Card Technology
A conventional wafer probe card consists of a set of fine

styli, or probes, mounted on a carrier substrate, typically

a printed circuit board. The probes are arranged so that
their tips form a pattern identical to that of the DUT's
contact pads. The outward ends of the probes are soldered
to traces on the carrier printed circuit board, which extend
to a connector that interfaces the probe card with the per_
formance board.

The probe card is normally mounted face down on the
prober, which brings the wafer to be tested to a position
under the probe card, aligns it so that its contact pads are
against the tips of the probes, and raises the wafer until
contact is made. In practical condit ions the t ips of the
probes may not be precisely in the same plane, and the
probe card may not be exactly coplanar with the surface
of the DUT. To compensate for such variations, the prober
raises the wafer beyond first contact by a controlled
amount, cal led the overdrive.

The probes on the probe card are usually held at a low
angle to the plane of the DUT, so that when they are pushed
by the wafer, the tips slide along the surfaces of the pads.
This horizontal movement, called scrub, helps remove the
oxide films on the surface to ensure good electrical contact,
and is an important element in the art of wafer probing.

A number of variations on this basic technology exist,
which attempt to improve the mechanical and electrical
performance of the probe card. In some advanced versions,
the carrier printed circuit board is designed to provide a
controlled-impedance environment in which each trace
presents a section of transmission line of known charac_
teristic impedance. A schematic illustration of a line on a
conventional probe card is shown in Fig. 1a.

Conventional probe cards have a number of inherent
limitations. Some are related to their mechanical properties
and others to their electrical performance.
Mechanical Limitations. Because the contact element, the
probe, is a thin long structural member, it tends to change
its spatial location under the repeated stresses of normal

o

E

U'

o
o
o
o.
o
o
E

(b)

Fig.2. The conventional probe as a signal line. (a) Equivatent
circuit. (b) Equivalent low-pass filter.

78 HEWLErr-pAoKARD JouRNAL JUNE 1990

Fig, 3. T he eff ect of par as iti c i n d u ctan ce i n th e ti me do nt ar n

operation. Consequently, the user needs to realign the

probes in the horizontal plane and along the vertical axis

after some number of touchdowns. This tedious operation

translates to a significant increase in the cost of ownership'

At higher probe densities the problem of maintaining

registration is further aggravated. High densities require

that the individual probes be made even thinner, longer,

and closer together. Such conditions are not only more

conducive to the loss of registration, but they also make

the realignment procedure too sensitive to be performed by

the user, and the probe cards need to be returned to the

factory for costly maintenance.

Electrical Limitations. The equivalent circuit of a single

Iine in a conventional probe card is shown in Fig. 1b. Here,

Lo is the inductance of the probe and Zo is the characteristic

impedance of the transmission line formed by the trace

and the ground plane on the printed circuit board carrier'

Typical values of these parameters are: Lo : 10 nH and

Zo: SoQ. Such a l ine may be used either to transmit a

signal from the tester to a DUT input (or from a DUT output

to the tester), or to supply a power or a ground connection

to the DUT. We will discuss its behavior in each of these

two situations.
Fig. 2a shows the equivalent circuit of a conventional

probe card in a simplified input-connection configuration'

(An output connection would not be much different in

principle.) In the frequency domain, the parasitic induc-

tance Lo of the probe causes the circuit to behave like the

low-pass filter shown in Fig. 2b, and determines the

bandwidth of that filter. Assuming matched conditions,

the upper 3-dB limit of the band is the frequency f at which:

(zrf)(2Lr) : Zs.

For Zo: 50O and Lo : 10 nH we f ind the bandwidth to

be about 400 MHz.
The effect of the needle inductance in a high-speed

switching situation is better illustrated in the time domain

(see Fig. 3). When the tester sends to the DUT a pulse

stimulus having a rise time 1,", the signal received at the

input of the DUT will have a longer rise time, 1,,, because

of the circuit's parasitic inductance 2Lo' The increase in

rise time is approximalely 2,2 times the time constant 2lol

Zn, or about 1 ns.

I

Probe Card

Lp

O*...---.rrl.l'1----0-

Generally, a circuit's bandwidth BW and its effect on the

rise time t" are related by the known expression:t

BW(3-dB) : ICt",

where K is a constant that ranges between 0.35 and 0'45'

With this in mind, the bandwidth and the rise time can be

used interchangeablY.
Waveform deterioration is not the only problem caused

by the parasitic inductances of the probes. In Fig' 2a, the

chip ground node and the tester ground node are not always

at the same electrical potential. This can lead to erroneous

testing and/or to unwanted coupling between different sig-

nal lines served by a common ground probe. Another prob-

lem is that the discontinuity between the probe and the

transmission line causes multiple reflections of the signal,

which result in a long settling time. Also, the mutual induc-

tance and the coupling capacitance between the long un-

shielded needles contribute to unacceptable levels of cross

talk between the signal lines.

In the case when a line of a conventional probe card is

used for power delivery, the high inductance of the probe

can cause significant variations in the voltage levels of both

the bias line and the associated ground connection' Consid-

er, for example, the circuit of Fig. 4' in which the power

line is at a voltage V. If the DUT switches a current I in a

time interval dt, a voltage dV will develop across each of

the probes, temporarily reducing the voltage across the

DUTto V - zdv. This change in the voltage can be roughly

expressed as:

dV : Lpl/dt.

For example, when eight drivers are simultaneously

switching 10 mA each in 1. ns, and the probe inductance is

10 nH, the power supply disturbance 2dV will be in excess

of t . sV.
In addition to the iust-described phenomenon, the volt-

age drop developing across the parasitic inductance of the

giound connection again causes the chip's ground potential

to deviate temporarily from that of the tester. The differ-

ence, known as the ground bounce, is coupled into other

sienal lines as unwanted and unpredictable noise'

'lt

V
Fig.5. fhe membrane probe conce7t

Membrane

Fig. 4. A power line in a conventional probe

JUNE 1 990 HEWLETT PAOKARD JoURNAL 79

Requirements for High-Performance probe Cards
Based on the analysis of the present probe-card technol-

ogy and its shortcomings on the one hand, and of the cur-
rent and future needs of the industry on the other, one can
formulate the requirements for the more advanced probe
card that is needed. Since the shortcomings of existing
probes have been identified as pertaining to the areas of
contact density and signal fidelity, it is natural to define
the incremental requirements in the same terms.

Requirements related to contact density include:
r The technology should allow the creation of a large

number of contact points (more than 500).
r The minimum contact pitch, that is, the center-to-center

distance between the closest contact points, should be
as low as 0.004 inch.

r The contact points should have a fixed alignment in the
plane parallel to the wafer under test.

r The contact points should be able to move with respect
to each other in the verical direction to accommodate
normal variations in wafer topography.
Requirements related to electrical performance include:

r The bandwidth of a line should be at least 10 to 20 times
the clock rate of the targeted digital systems (i.e., 2 to 3
GHz).

r A controlled-impedance, reflectionless electrical envi-
ronment should extend from the tester to within at most
1 mm from the I/O pads of the DUT.

r The uncompensated inductance of the contact must not
exceed 0.1 nH.

r The cross talk between adiacent lines should be at least
two orders of magnitude less than in a conventional
probe card of the same density.

The Membrane Probe Concept
The membrane probe is a proprietary wafer probing tech-

nology developed at Hewlett-Packard's Circuit Technology
R&D Laboratories as a solution to the high-performance
wafer-level test problems described above. The concept of
the membrane probe card is depicted in Fig. S. As shown
in the illustration, a thin and flexible dielectric film (a
membrane) supports a set of microstrip transmission lines
that connect the DUT to the test electronics. Each micro-
strip transmission line is formed by a conductor trace and
a common ground plane positioned on the opposite side of
the flexible membrane. The conductor traces and the
ground plane are patterned on the membrane using photo-

Force Delivery
Mechanism

lithographic techniques.
Given the thickness and the material of the membrane,

the width of a signal trace is chosen to obtain the desired
characteristic impedance Zo of the microstrip transmission
line. Typical values of Zo in common r.rr"

"r"
50 and 75

ohms.
Contact to the DUT is made by an array of microcontacts

which are plated up at the ends of the transmission lines
through holes in the insulating membrane. The membrane
is operated under low tension in a drumhead configuration
so as to planarize the contact array. The tension in the
membrane is carefully controlled to allow a degree of inde-
pendent motion of the contact points in the vertical direc_
tion, thus accommodating small variations in the heights
of the contacts or in the topology of the device under test.

With regard to the need for higher pin counts and contact
densities, the membrane probe card technology offers a
quantum jump in comparison with the conventional tech_
nology. In the membrane probe, the leads and the contact
points are created by photolitographic means with inhe_
rently high resolution and positioning accuracy. This al_
Iows the creation of fine, dense patterns, and makes the
manufacturing process, and ultimatelv the cost, virtuallv
independent of the complexity of the pattern.

Since the contact points are fixed on a common carrier
(the membrane), they are fundamentally aligned for life in
both the vertical direction and in the plane of the DUT.
This eliminates the need for probe realignment, which is
an extremely labor-intensive and costly operation in the
conventional technology.

In the area of electrical performance, the membrane probe
technology presents an equally significant advance. The
transmission-line configuration extends all the way to
within 0.1 mm of the DUT's I/O pads, thus providing a
carefully controlled electrical environment in practically
the entire path of the signal. There is very little uncompen_
sated lead inductance to cause waveform degradation or
power or ground potential bounce, or to generate signal
coupling through a common ground inductance.

Furthermore, the presence of a ground plane so close to
the leads concentrates the electric field under the traces.
which minimizes the coupling capacitance between them,
thus greatly reducing cross talk.

Architecture of the Membrane probe

The architecture of the membrane probe card is shown

Terminations
and Bypasses

/ \

Translator
Ring

. \

Multilayer
Carrier Membrane

I l

\ /

V
Contact
Bumps

Fig. 6. Architecture of the mem-
brane probe card.

80 rEwrerr-prcxARD JoUBNAL JUNE 1990

in Fig. 6. The membrane, configured as described above'

is attached to a printed-circuit-board carrier, which also

carries termination resistors, bypass capacitors, or any

other necessary components. A force delivery mechanism

is mounted on the printed circuit board carrier and is de-

signed to perform three distinct and independent func-

tions:
r Apply a force to the microcontacts sufficient to obtain

a low and stable contact resistance.
r Activate a scrubbing motion to ensure the removal of

surface insulating layers, including oxides, from the sur-

face of the DUT.
r Provide the mechanical degrees of freedom necessary to

ensure continuous conformance of the plane of the mi-

crocontacts to the plane of the DUT.
The required contact force is exerted on the membrane

by the two leaf springs shown in Fig. 6 through a rigid

translator ring attached to the membrane. The primary fac-

tor determining the total force needed is the force per con-

tact, so the total force depends on the number of contact

pads in the DUT and is set by a proper choice of leaf spring

ihi"kttmr. It was empirically determined that for the selected

bump material to make a low-resistance contact with

aluminum (the most widely used pad material in ICs), the

force per bump must be at least 10 grams. Taking this into

account along with other considerations, the range was

determined to be 15 + 5 grams.
As mentioned earlier, the scrubbing motion of the contact

bumps with respect to the probed surface is of critical

importance to obtaining a low, stable, and repeatable con-

tact resistance, especially with non-noble materials' For

aluminum, the minimal acceptable scrub action was found

to be about L0 micrometers. The upper limit is defined by

the size of the contact pads on the DUT, and for most

practical cases is about 25 pr,m. In the membrane probe, the

scrub action is built into the force delivery mechanism

rather than implemented using external actuators'
The compliance of the probe's contact points to the sur-

face of the DUT is perhaps the most critical prerequisite

for successful probing' The importance of compliance

stems from the fact that in practical conditions the position

of the probe card in the prober can never be adjusted accu-

rately enough to make it perfectly coplanar with the wafer's

surface. Even if such an adjustment could be made, every

wafer has a different bow and taper, and therefore presents

a new surface to the probe. It is impractical to readjust the

probe for every wafer.
In the conventional wire probe, compliance is achieved

"naturally" because the long needles are flexible and there

is virtualiy no mechanical linkage between individual con-

tact points. In the membrane probe, special provisions need

to be made to achieve adequate surface compliance' These

provisions must accommodate two modes of deviation

from coplanarity: a short-range mode and a long-range

mode. The short-range mode consists mainly of variations

in the bump height and in the topography of the DUT' The

long-range mode is a general tilt of the probe's surface with

resfect to the plane of the DUT. The two modes are funda-

-".tt"lly independent of each other. The force delivery

mechanism of the membrane probe has been designed to

provide both short-range and long-range compliance with

inu Ouf surface at every touchdown through indepen-

dently acting micromechanical means'
At the outer edge of the printed circuit board carrier'

connectors are provided to interface with the tester's per-

formance board. The size and shape of the probe's printed

circuit board carier and the type of interface connector

are different for different probe/tester combinations, but

the core remains the same.

Performance of the Membrane Probe Card

The performance of the membrane probe card has been

fully claracterized both parametrically and in actual use

at aipha sites. A parametric evaluation is one that is carried

out in the laboratory under controlled conditions' and is

based on special test structures designed for the purpose'

The products of a parametric evaluation are the basic pa-

."rrr"t"r, of the tested probe card. They reflect its intrinsic

qualities, and are independent of the other components

involved (tester, DUT, etc.). Examples of parametric mea-

surements are characteristic impedance and bandwidth'

An alpha-site evaluation is one in which the probe card

is used to test a real IC in a factory atmosphere in conjunc-

tion with all the other components of the test setup' Its

purpose is to verify the probe card's performance and un-

"ot "t
utty issues that may occur in realistic conditions'

Parametiic Evaluation. The parametric evaluation of the

membrane probe card covered both its dc and its ac prop-

erties. The dc parameters measured were the contact resis-

tance and the current carrying capacity' The ac parameters

Flg, 7. Contact reslstance as a
function of the number of touch-
downs.

JUNE 1990 HEWLETT-PACKARD JoUBNAL 81

Number of Touchdowns on Aluminum-Coated Water

were the characteristic impedance, the bandwidth, the
pulse rise time, and the cross talk between lines.

Contact resistance was evaluated by measuring the total
resistance between one of the probe card's lines and an
aluminized silicon wafer, then subtracting the known trace
resistance. Aluminum (as a 1-pm-thick film) was chosen
for two reasons. First, it is the most widely used IC metal-
lization, and second, it is the most difficult metal to make
contact with because of its propensity for oxide formation.

A plot of the contact resistance to aluminum as a function
of the number of touchdowns is shown in Fig. 7, As can
be seen, the contact resistance remains low and fair ly con_
stant for over 20,000 touchdowns. It then starts to deterio-
rate as oxide debris accumulates on the microcontacts.
After a simple cleaning, however, the low resistance is
restored and the behavior is repeated. An important utility
of this plot is that it defines the cleaning frequlncy required
to attain stable performance. Membrane probes were found
to deliver low and stable contact resistance for up to 1
million touchdowns when cleaned once everv 20,000 cvcles.

Current carrying capability of a trace was defined as the
dc current that can be continuously passed through that
trace without an observable change in its appearance. For
a standard signal line the current carrying capability was
found to be about 300 mA and was relatively independent
of trace thickness in the range of 0.5 to .1. ozlft2. Coinciden_
tally, roughly the same current carrying capability was mea_
sured for the contact between the bump and the wafer,s
aluminum metallization. Hovr,ever, in this case it was de_
fined as the maximum dc current at which no hysteresis
is observed in the VI characteristic curve.

Characteristic impedance measurements were made
using time-domain reflectometry (TDR)., The TDR profile
of a signal line is shown in Fig. B. parts of the plot io.."r_
pond ing lo var ious sec t ions o f the c i rcu i t a re marked: a
50.0 controlled-impedance connector, the trace on the
probe card's printed circuit board carrier, and the micro_
strip line on the membrane. According to this TDR signa_
ture, taken with a S0-ps system, the characteristic imped-
ance of the line tested is within +.l,Oo/o oI the target value
of so0.

Transmission response to a 50-ps step function excitation

was recorded for the same S0() signal line and is shown
in Fig. 9. The 10-to-90% rise time of the response was
determined to be about 180 ps, a considerablelraction of
which occurs in the B0-to-90% region.

Bandwidth measurements were made by plotting the fre_
quency response curve of one of the membrane probe card,s
lines. This curve, also known as a Bode plot, is shown in
Fig. 10. The 3-dB bandwidth of the tested line was found
to be in the range of 2.s to 3.0 GHz.

Cross talk between the probe card's lines was measured
as a function of frequency, and the results are plotted in
Fig. 1 1. The measurements were made on a card containine
2-72 traces, which gives an idea of the spatial density oi
the lines in this case. One of the two curyes shown is for
adjacent l ines, while the other curve is for alternate l ines.
At 100 MHz the cross talk is - 45 dB for adjacent l ines and- 78 dB for alternate lines. In comparison, a conventional
wire probe card showed adjacent_line cross talk of _ 3B dB
at a density less than one third that of the membrane probe
card o f F ig . 11 .
Alpha-Site Testing. A number of membrane probe cards
were fabricated to test specific chips of various technol_
ogies, I/O counts, pad metallurgies, and functionality. The
testing of these chips was conducted in Hp,s wafer fabrica_
tion plants. Below is a brief description of the tests and
their results.
1. Bipolar ECL Flash Analog-to-Digital Converter. This 1.b_
watt, mixed-signal chip with b0 I/O pads and gold metalli_
zation was tested at a 10-MHz sampling rate using a
tungsten wire probe card. It was then retested with the
membrane probe card, and the test results were compared.
The superior accuracy of the membrane probe card is dem_
onstrated by Fig. 12. In this plot, the voltage at test point
1, denoted here as V,or, is recorded for aiample ol tzO
dice. This voltage is offset from the chip ground by the
drop across a forward-biased junction, andits measurement
is intended to detect variations in the chip's ground poten_
tial. The results show a progressive deterioration in the
stability of the measurements made with the wire probe
card, while the membrane probe card measurements are
consistent over the entire test.

The accuracy of the membrane probe data was confirmed

q)

o=
o

o
o()
o
tr

fime (200 ps/div)

Fig. 8, Time-domain reflectometry profile and characteristic
impedance.

82 tewren-pacrARD JouRNAL JUNE 1990

Time (200 ps/div)

Fig.9. Transmlssion response and rise time

50O Printed Circuit
Connector BoardCarr ier

ao
tt

o
o

o

Frequency (GHz)

Fig. 10. Bode plot and the 3-dB bandwidth'

by packaging a number of dice and repeating the measure-

ments on-the packaged parts. The spread of the membrane

probe card measurements translates to a contact resistance

rt"bitity of better than 5 m,fl, which is 40 times better than

that of the wire probe card.

The membrane probe's ability to make repeated touch-

downs on the same die without appreciable damage to the

pads is illustrated by Fig. 13. For 200 touchdowns the total

variation is less than 1.2 mV, which corresponds to a con-

tact resistance variation of 6 mO. By contrast, using a wire

probe for more than two touchdowns on the same chip

usually causes enough damage to render the pads unbond-

able. This capability is of significant value to chip manufac-

turers, who sometimes lose up to 5% of their chips to pad

and passivation damage.

z. Blpolar ECL Digital-to-Analog Converter' This rep-

resented an at-speed analog test of an industry standard

product using the HP 9840 VHF linear tester and the mem-

Lrane probe card shown in Fig. 14' The analog output re-

,po.tr" of the device at a 10-MHz clock rate is presented

in Fig. 15 for both the membrane probe card and a conven-

tionai counterpart. The rise and fall times are about the

same at 1.3 and 1.0 ns respectively (they are essentially

determined by the switching characteristics of the device

rather than by the probe's performance). However, the set-

tling time measured by the membrane probe card is only

g ns compared with 32 ns for the conventional probe card'

This significant difference is a result of the improved im-

pedance matching in the membrane probe card'

e. NtttOS CPU. A membrane probe card was used to test a

32-bit microprocessor at B5'C (Fig. 16). The B'4-mm-square,

1S-watt chip has 272 peipheral aluminum pads arranged

in two staggered rows at an effective pitch of 110 pm' This

type of device has very large current transients, and the

stability of power buses is of special concern.

The device was normally tested at speed only after pack-

aging. With the membrane probe card, it became possible

to .un the at-speed package test on the wafer for the first

time. Careful membrane layout and close positioning of

over 130 bypass and termination components helped ob-

tain the desired Performance.
4. CMOS ASIC. In this alpha-site test, a membrane probe

card was used to test high-pin-count ASICs (application-

specific ICs) before TAB (tape automated bonding) inner-

lead bonding. The probe card addressed taO gold mesa

bumps, each 75 pm square, placed on a 150-pm pitch'

One part of the test was designed to evaluate the mem-

brane probe card's fitness for the specific purpose of prob-

ing bumped wafers. In that part, 600 passes were made on

one wafer, which had about 100 dice' The average contact

resistance variation was found to be less than 13 milliohms'

O Wire Probe
- Membrane Probe

,, Packaged Device

a '
o

oo
o

t t a a
o o o

a o a
o

FrequencY (MHz)

Fig. 11. Cross talk.

Number ot Die

Fig. 12. Measurement accuracy.

Adiacent Lines

JUNF r99o HEWLETT-PAcKARo ..rouRNer 83

I

100

Number of Touchdowns

Fig. 13. Measurement repeatability.

and no significant damage to the gold bumps on the wafer
was observed. Attempts to repeat the same test with a con-
ventional wire probe card failed after only about 8000
touchdowns. The gold bumps on the wafer were severely
damaged, especially at the edges, and the probe needles
went so badly out of alignment that on-site repair was no
longer feasible.

Fig. 14. The membrane probe for DAC testina.

One benefit of using the membrane probe card to tesl
bumped wafers is the probe,s ability to detect individual
short bumps, a commonly encountered defect. Such
bumps, if undetected, would cause assembly rejects at the
subsequent inner-lead bonding step.

Conclusions
An advanced wafer probing technology, the membrane

probe card, has been developea in ,"sp#r" to an increas-
ingly acute problem in the IC industry. The technology
allows at-speed testing of high-performance integrated cir_
cuits at the wafer level, and significantly extends the limits
of pin count and density that can be accessed by the IC
test engineer. The new probe card has been fullv evaluated.
paramet r ica l l y as we l l as in a number o f a lpha s i tes .

Acknowledgments
Key members of the membrane probe development team

were Betty Belloli, Sam Burriesci, Brian Elliott, Michael
Greenstein, and Rick Huff. Valuable contributions were
made by Walker Colston, Jack Foster, Frank perezalonso,
Kazuo Ishii, Hiroshi Sakayori, and Miklos perlaki. Brian
Leslie managed the effort.

'|
LSB

-0.06

-o.o7-0.2

I -o.l
CL

o -o.o

-0.8

(a)

o

-o.2

-0.4

-0.6

-0.8

0 50 100
(b) Time (ns)

Fig. 15. Settling time of the DAC analog output. (a) Conventional probe card, (b) Membrane
probe card

84 rEwrErr-pncKARD JoURNAL JUNE 1990

50 100
Time (ns)

Fig. 16. The membrane probe for microprocessor testing

References
1. R. E. Mattick, Tronsmission LinesforDigital ond Communico-

tion Networks, McGraw-Hill, 1969, p. 191.

2. B. Oliver, "Time-Domain Reflectometry," Hewlett-Pockord

/ournoi , Vol . 15, no. 6, February 1S64, pp. 7-7 '

Additional Reading on the Membrane Probe:

3. B. Leslie and F. Matta, "Membrane Probe Card Technology

(The Future for High Performance Wafer Testl," Proceedings of

the 79BB IEEE Internotionol Test Conference, pp.601-607.

4. B. Leslie and F. Matta, "Wafer-Level Testing with a Membrane

Probe," Design ond Test ofComputers, February 1989, pp' 10-17'

JUNE 1 990 HEWLETT-PACKARD JOURNAL 85

Authors
June 1 990

6 = HP OSF Molrf
--:_:-

:

lMaking computers more in-
tu i t ive and fun to use is the
professional interest of Axei
Deininger, a software de-
s ign engineer who jo ined
HP in 1982. He was HP's
technical representative to
OSF for user interfaces, the
architect for defining OSF/
Motif behavior. and

coauthor of the style guide for the HP OSF/Motif
product. He was a Learning Products project
leader with the X Window Systems marketing de-
velopment team at HP, and a manufacturing sys-
tems manager. Currently, Axel is investigating en-
hanced typographic capabilities for the X server.
Before joining HP, he was an information systems
speciailst with Hughes Aircraft Company in El
Segundo, California, and a systems analyst with
Marsh & McLennan in Seattle, Washington. He has
written HP manuals on X systems, the Hp Vectra
CS, HP Integral personal computers, and Hp cal-
culators. Born in Potsdam, East Germany, Axel re-
s ides wi th h is wi fe in Corval l is , Oregon. He enjoys
hik ing, gardening, and t ravel ing around the paci l ic
Northwest.

Af ter jo in ing HP in 1988,
learning products engineer
Charles Fernandez co-
authored the OSF/[/otif
styleguide and the HP OSF/
Motif styleguide, and
helped document the X
Window System and re-
lated products. Charlie re-
ceived a BA degree (1972)

in English from the University of Detroit, an MA
degree (1975) in Engl ish l rom the Univers i ty of Ore-
gon, and a journeyman carpenter certificate (1 978)
from Carpenter Col lege in Adair Vi l lage, Oregon.
Currently, he is the documentation project leader
for the HP Visual User Environment (VUE). His pro-
fessional interests inc lude user inter face design,
on- l ine help and documentat ion, and minimal is t
hard-copydocumentat ion. Char l ie is the authorof
articles on f lyJishing, a member ol the Federation
of Flyf ishers, and the Mid-Valley Chapter co-pres-
ident of the Society for Technical Communication.
Born in Gloversville, New York. he is married and
l ives in Eugene, Oregon. His hobbies include f ly-
fishing, science fiction writing, reading detective
stories, camping, and cross-country skiing.

Kelth M. Taylor

17.=.rl/ 05F i/t,r l i f ! rndobr fri,,:rt:r{rer

As a software development
engineer, Keith Taylor was
a member of the engineer-
ing team for the HP window
manager and HP OSF/Motif
products. A graduate of
Oregon State University
wi th a BS degree (1978) in
electrical engineering, and
Stanford University with an

wS degree (1 9Bg) in computer sc ience, he jo ined
HP in 1981 in Corval l is , Oregon. Kei th a lso worked
on the Microsoft Windows driver for the Dortable Hp
Vectra CS, on Microsoft Multiplan for the HP Inte-
gral personal computer and HP Series 200 comput-
ers, and on HP Word/8o for the HP Series 80 com-
puters. He is now working on a new version of Hp
OSF/1,/otif window manager. Before loining HP, he
designed software for real-time commano and con-
trol systems for GTE in Mountain Vtew, California.
Keith is a member ot the ACM, the IEEE, and the
IEEE Computer Society. His professional interests
include user interface software and issues related
to the UNIX community. He served in the U.S. Army
Military Police. He is actjve in civic aifairs as a
member of the Corvallis Citizens Advisory Commis-
s ion on Bicycles. Born in Honolulu, Hawai i , Kei th
l ives wi th h is wi fe and two chi ldren in Corval t is . He
enjoys swimming, bowl ing, b icycl ing, reading, and
watching off-beat movies.

Soon after graduating from
the Massachusetts Instrtute
of Technology with BS and
MS degrees in computer
science in 1977, Brock Kr i -
zan jo ined HP's General
Systems Division. He was
a summer co-op student at
HP's Data Systems Division
for four years prior to joining

, e q r o P r r v r r v J U | l

HP ful l - t ime. Hewas a memberof the HPwindow
manager and HP OSF/Motif window manager
development teams Brock worked on a microcode
assembler lor the HP 3000 system, an HP 2100
data communications driver. and an HP 300 data
communications package. He provided quality as-
surance support for the HP series 80 computer and
developed the HP Personal Application N,4anager
(PAM) for the HP Integral personal computer and
HP 9000 Series 300 computer. He was a member
of the initial X development team at HP, and de-
veloper of an X-based emulator package {or an HP
proprietary window system. He is now a proiect
manager for system user interface components
such as the HP OSF/Motif window manager. His
professional interests include user inter{ace sof!
ware and artiJicial reality. Brock authored a previ-
ous HP Journal articie on the PAIV1 screen for the
HP Integral PC. Born in Yonkers, New York, he lives
with his wife and two daughters in Corvallis, Ore-
gon. His hobbies include mountain b ik ing, cross-
country ski ing, whi te-water canoeing, h ik ing, and
line art aoDreciation.

Sailing and furniture mak-
ing are the hobbies ol Ben-
jamin Ellsworth, an R&D
sottware engineer who
helped design the HP OSF/
Motif widget product. He
joined HP in 1985, shortly
after gradualing magna
cum laude from Brigham
Young University with a BS

degree in computer science and statistics. In the
past, Beniamin worked on HP common X interface
widget development and CAEE ASIC vendor suo-
port. Before joining HP, he performed data com-
munrcatrons test work for lBN4 in San Jose, Califor-
nia. He is the author of two technical articles on the
HP common X interface. His professional interests
include compulers and human interaction. Benta-
min l ives in Corval l is , Oregon.

Don McMinds is the
documentation proJecl
leader for the X Window
System portion of the HP-
UX Release 8.0 operating
system. He loined HP in
1982 as a programmer-
analyst in MlS. In 1986, he
became a learning prod-
ucts engineer and wrote

the HP Bas c Programmer's Manual, the HP Vectra
CS Service Manual, and many other user's manuals
for HP Vectra peripheral equipment. He received
a BS degree (1 964) in englneering, and an MA de-
gree (1973) in management from the University ot
Nebraska. During a23-year carcetin the U.S. Air
Force, Don served as a Titan ll missile crew com-
rnander and in staff positions at the Strategic Air
Command (SAC), North American Air Defense
Command (NORAD) headquarters, and at Mititary
Airl tt Command (MAC) headquarters. He retired
as a lieutenant colonel in 1982. Born in Wenatchee,
Washington, Don l ives wi th h is wi fe in Corval l is ,
Oregon. He has twin daughters who are both
sophomores in col lege. His hobbies include rac-
quetbal l , ham radio (l icensed s ince 1963), model
railroads, and fly-fishing and fly-tying.

Martin R. Cagan
As a project leader with
HP's Software Engineering
Systems Division, Martin
Cagan helped develop the
HP SoftBench system.
l\,4arty joined HP in 1 981 as
a software engineer and
worked on commercial ap-
plications and environ-
ments forthe HP3000 com-

puter. He also developed software tools, including
the HP Al workstation, as a project leader and man-

Beniamin J. Ellsworth

Axel O. Ileininger

\ i . L i , i : . L
Donald L. lrcilinds

86 Hewrerr-prcxARD JoUBNAL JUNE 1990

ager at HP Laboratories. He earned a bachelor of
science degree in compuler science in 198.1 f rom
the Universlty of California at Santa Cruz. Marty,
whose professional interests include applicatjon in-
tegration and software development environments,
recently left HP to join a CASE company in San
Francisco.

48
-

Software Development Tools
-

After joining HP in 1985 in
Fort Collins, Colorado, soft-
ware development en-
gineer Colin Gerety
developed the HP
SoftBench editor, remote
data access, automatic
menu generation, and
dialog box handling sys-
lems. He also worked on

HP Common Lisp and expert system shell investi-
gations. He is named a coinventor on two patents
pending for HP SoftBench---execution manage-
ment and the broadcast message server. Colin
earned a bachelor's degree (1 979) in music at the
University of New N4exico and a master ol science
degree (1988) in computer science from Oregon
State University, with a focus on truth maintenance
systems. Colin was born in New Haven, Connect
icut, and he and his wife and four children reside
in Fort Collins. Colorado. His hobbies include
music, bicycling, and studying human society.

59 = HP Encapsulator

Brian D. Fromme
Brian Fromme designed
and developed the HP
SoftBench subprocess
control lacility and the HP
Encapsulator as a software
development engineer with
HP's Software Engineering
Systems Division. Earlier,

puter science and mathematics. He is named an
inventor in a pending patent for the HP Encap-
sulator. Brian volunteers teaching time to schools
through the HP Visiting Scientist Program near his
home. He was born in Rochester, New York, and
he and his wife and two children live in Fort Collins,
Colorado. He enjoys all sports and plays baseball,
football, and basketball.

69
-Particle

Beam LG/MS

Robert G. Nordman
A project manager for the
HP 599804 particle beam
interface for LC/MS, Bob
Nordman has worked on a
variety of HP products
since he joined the com-
pany in 1 969. He was a de-
velopment engineer for the
HP 79704 tape unit, HP
7920A disc drive, HP

26444 terminal, and HP 84504 diode array spec-
trophotometer. He was a project leader for the
mechanical portion of the HP 8451A diode array
spectrophotometer and a project manager f or the
HP 8452A diode array spectrophotometer. Bob is
named an inventor in three patents on tape drive
technology and one on the particle beam system.
Before joining HP, he helped design mechanisms
for aerial cameras for Hycon Manu{acturlng Com-
pany, computer peripherals for Burroughs corpo-
ration, home appliances for Fisher & Paykel (New
Zealand), and computer peripherals for Bell &
Howell Corporation. He received his BSME degree
(1 951) from the lilassachusetts Institute ofTechnol-
ogy, and his MS degree (1 973) in engineering from
Stanford University. A lirst lieutenant in the U.S. Air
Force from 1 951 to 1 953. Bob was born in New York
City, and he and his wife now live in Palo Alto,
California. He has three sons and three grand-
daughters, and enjoys letlerpress printing, garden-
ing, reading, and playing guitar.

Since ioining HP in 1983,
Alex Apffel has helped de-
velop the HP partlcle beam
LC/MS system and the HP
AminoQuant amino acid
analyze(. After earning a
bachelor of science degree
(1978) at the University of

I J Hawai iatManoaandaPhD
i i degree (1981) at Virg in ia

Polytechnic Institute, and after completing post-
doctoral studies (1981-83) in analytical chemistry
at the Free University o{ Amsterdam, Alex joined
HP in Waldbronn, West Germany. He has pub-
lished ten technical journal articles on chromato-
graphic methods, and is named an inventor in pat-
ents on amino acid analyzer chemistry and auto-
maled precolumn derivatization. Before joining HP,
he worked as an aDolications chemist for Varian
Associates. Alex is a member of the ACS and the
ASMS. Born in Coronado, California, Alex is mar-
ried and lives in New Almaden, California. He en-
joys skiing, reading, and working with personal
comDuters.

77 IMembrane Probe Card
-

As an R&D project leader
in the HP Circuit Technol-
ogy Group, Farid Matta was
involved in the develop-
ment of the membrane
probe technology. He has
arso serveo as process en-
gineering manager for
CMOS lC production and is
now working on advanced

TAB packaging as an R&D project manager. He
joined HP in 1981. Farid is an author or coauthor
of 20 technical publications on lC processing, test-
ing, and packaging, and is coauthorof a book on
electrical contacts and interconnects published in
the USSR in 1974. He is named an inventor in a
number of patents issued or pending on lC testing
and packaging, and is a member ofthe IEEE and
the CHMT. Belore joining HP, he worked on bipolar
lC fabrication at Advanced Micro Devices in Sun-
nyvale, California, and was an assislant professor
at the Institute of Electronics in Menouf , Egypt. He
received his BSEE degree (1 965) and his PhD de-
gree (1972) in microelectronics from the Leningrad
Institute of Electrical Engineering. Farid was born
in El lvlenya, Egypt, and lives with his wife and son
in Mountain View, California. He enjoys painting, art
h istory, and hik ing.

Farid Mette

w

I

_ - he developed a compiler

,t i . tor HP Business BAStCT
3000 and, at HP Laboratories, he worked on Lisp
compilertechnology and ported Lisp to HP Preci-
sion Architecture. Currently in sales development,
Brian joined HP in 1983. He has also worked in sof!
ware development at the Artjficial Intelligence
Center of SRI International. A graduate of the State
University of New York College at Brockport, he
earned bachelor of science degrees (1 982) in com-

Jemes A. Aptiel, Jr.

Colin Gerety

JUNE 1990 HEWLETT.PACKARD JOURNAL 87

Hewlett-Packard Company, 3200 Hil lview
Avenue, Palo Alto, California 94304

ADDBESS COBRECTION REQUESTED

Bulk Rate
U S Postage

Paid
Hewlett-Packard

Company

0 ? 1 9 9 1 2 7
1 4 R , O G E O R G E
5 U I T E { 0 9

Ille il+8
P O N T I S

H I L L A N
C A g t i 3 0 t r

CHANGE OF ADDRESS:
5953-8581

To subscribe, change your address of delele your name from our mai[ng l ls l send your request to Hew et l Packard

Journa. 3200 Hi lv iew Avenue Palo Al lo CA 94304 U S A lncJude your o d address label. r l any Al low 60 days

HP Archive

This vintage Hewlett-Packard document was
preserved and distributed by

www.hparchive.com

Please visit us on the web!

On-line curator: John Miles, KE5FX

jmiles@pop.net

 for his contribution of this material.
The HP Archive thanks George Pontis

